BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17011576)

  • 1. Autocatalytic activation of influenza hemagglutinin.
    Lee JH; Goulian M; Boder ET
    J Mol Biol; 2006 Dec; 364(3):275-82. PubMed ID: 17011576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-length influenza hemagglutinin HA2 refolds into the trimeric low-pH-induced conformation.
    Swalley SE; Baker BM; Calder LJ; Harrison SC; Skehel JJ; Wiley DC
    Biochemistry; 2004 May; 43(19):5902-11. PubMed ID: 15134464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of influenza virus hemagglutinin-mediated membrane fusion by a compound related to podocarpic acid.
    Staschke KA; Hatch SD; Tang JC; Hornback WJ; Munroe JE; Colacino JM; Muesing MA
    Virology; 1998 Sep; 248(2):264-74. PubMed ID: 9721235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influenza virus M2 protein ion channel activity is not required to maintain the equine-1 hemagglutinin in its native form in infected cells.
    Takeuchi K; Shaughnessy MA; Lamb RA
    Virology; 1994 Aug; 202(2):1007-11. PubMed ID: 7518161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the Glu residues of the influenza hemagglutinin fusion peptide in the pH dependence of fusion activity.
    Korte T; Epand RF; Epand RM; Blumenthal R
    Virology; 2001 Oct; 289(2):353-61. PubMed ID: 11689057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of influenza haemagglutinin at the pH of membrane fusion.
    Bullough PA; Hughson FM; Skehel JJ; Wiley DC
    Nature; 1994 Sep; 371(6492):37-43. PubMed ID: 8072525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influenza virus M2 protein and haemagglutinin conformation changes during intracellular transport.
    Ciampor F; Cmarko D; Cmarková J; Závodská E
    Acta Virol; 1995 Jun; 39(3):171-81. PubMed ID: 8579000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide models for the membrane destabilizing actions of viral fusion proteins.
    Epand RM; Cheetham JJ; Epand RF; Yeagle PL; Richardson CD; Rockwell A; Degrado WF
    Biopolymers; 1992 Apr; 32(4):309-14. PubMed ID: 1623124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of histidine residues in low-pH-mediated viral membrane fusion.
    Kampmann T; Mueller DS; Mark AE; Young PR; Kobe B
    Structure; 2006 Oct; 14(10):1481-7. PubMed ID: 17027497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-induced conformational modification of the hemagglutinin molecule alters interaction of influenza virus with antigen-presenting cells.
    Eisenlohr LC; Gerhard W; Hackett CJ
    J Immunol; 1988 Sep; 141(6):1870-6. PubMed ID: 2459193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function.
    Langley WA; Thoennes S; Bradley KC; Galloway SE; Talekar GR; Cummings SF; Varecková E; Russell RJ; Steinhauer DA
    Virology; 2009 Nov; 394(2):321-30. PubMed ID: 19755201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Surface localization of amino acids in influenza virus hemagglutinin during functional transformation of virions by acidic pH].
    Ksenofontov AL; Zhirnov OP; Danilov AV; Baratova LA
    Mol Biol (Mosk); 1995; 29(3):635-44. PubMed ID: 8552067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics.
    Cross KJ; Wharton SA; Skehel JJ; Wiley DC; Steinhauer DA
    EMBO J; 2001 Aug; 20(16):4432-42. PubMed ID: 11500371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polar octapeptide fused to the N-terminal fusion peptide solubilizes the influenza virus HA2 subunit ectodomain.
    Chen J; Skehel JJ; Wiley DC
    Biochemistry; 1998 Sep; 37(39):13643-9. PubMed ID: 9753451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Glu11 and Gly8 of the H5N1 influenza hemagglutinin fusion peptide in membrane fusion using pseudotype virus and reverse genetics.
    Su Y; Zhu X; Wang Y; Wu M; Tien P
    Arch Virol; 2008; 153(2):247-57. PubMed ID: 18030546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of target membrane sialic acid residues in the fusion activity of the influenza virus: the effect of two types of ganglioside on the kinetics of membrane merging.
    Ramalho-Santos J; Pedroso De Lima MC
    Cell Mol Biol Lett; 2004; 9(2):337-51. PubMed ID: 15213813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells.
    Turner PC; Moyer RW
    Virology; 2006 Mar; 347(1):88-99. PubMed ID: 16378629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relevance of salt bridges for the stability of the influenza virus hemagglutinin.
    Rachakonda PS; Veit M; Korte T; Ludwig K; Böttcher C; Huang Q; Schmidt MF; Herrmann A
    FASEB J; 2007 Apr; 21(4):995-1002. PubMed ID: 17218542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus.
    Gibbons DL; Vaney MC; Roussel A; Vigouroux A; Reilly B; Lepault J; Kielian M; Rey FA
    Nature; 2004 Jan; 427(6972):320-5. PubMed ID: 14737160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spring-loaded mechanism for the conformational change of influenza hemagglutinin.
    Carr CM; Kim PS
    Cell; 1993 May; 73(4):823-32. PubMed ID: 8500173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.