These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 17011578)
1. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. Licht A; Brantl S J Mol Biol; 2006 Dec; 364(3):434-48. PubMed ID: 17011578 [TBL] [Abstract][Full Text] [Related]
2. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis. Eckart RA; Brantl S; Licht A FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150 [TBL] [Abstract][Full Text] [Related]
3. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. Licht A; Golbik R; Brantl S J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073 [TBL] [Abstract][Full Text] [Related]
4. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Servant P; Le Coq D; Aymerich S Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552 [TBL] [Abstract][Full Text] [Related]
5. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
6. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Licht A; Preis S; Brantl S Mol Microbiol; 2005 Oct; 58(1):189-206. PubMed ID: 16164558 [TBL] [Abstract][Full Text] [Related]
7. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. Jourlin-Castelli C; Mani N; Nakano MM; Sonenshein AL J Mol Biol; 2000 Jan; 295(4):865-78. PubMed ID: 10656796 [TBL] [Abstract][Full Text] [Related]
8. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA. Steinmetzer K; Brantl S J Mol Biol; 1997 Jun; 269(5):684-93. PubMed ID: 9223633 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. Moir-Blais TR; Grundy FJ; Henkin TM J Bacteriol; 2001 Apr; 183(7):2389-93. PubMed ID: 11244084 [TBL] [Abstract][Full Text] [Related]
10. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. Licht A; Brantl S J Biol Chem; 2009 Oct; 284(44):30032-8. PubMed ID: 19726675 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of the arginine repressor-operator complex from Bacillus subtilis. Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186 [TBL] [Abstract][Full Text] [Related]
12. CcpN controls central carbon fluxes in Bacillus subtilis. Tännler S; Fischer E; Le Coq D; Doan T; Jamet E; Sauer U; Aymerich S J Bacteriol; 2008 Sep; 190(18):6178-87. PubMed ID: 18586936 [TBL] [Abstract][Full Text] [Related]
13. Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. de la Hoz AB; Pratto F; Misselwitz R; Speck C; Weihofen W; Welfle K; Saenger W; Welfle H; Alonso JC Nucleic Acids Res; 2004; 32(10):3136-47. PubMed ID: 15190131 [TBL] [Abstract][Full Text] [Related]
14. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643 [TBL] [Abstract][Full Text] [Related]
15. The structure of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator and Co-repressor, L-arginine. Cherney LT; Cherney MM; Garen CR; James MN J Mol Biol; 2009 Apr; 388(1):85-97. PubMed ID: 19265706 [TBL] [Abstract][Full Text] [Related]
16. The transcriptional repressor TtgV recognizes a complex operator as a tetramer and induces convex DNA bending. Guazzaroni ME; Krell T; Gutiérrez del Arroyo P; Vélez M; Jiménez M; Rivas G; Ramos JL J Mol Biol; 2007 Jun; 369(4):927-39. PubMed ID: 17482209 [TBL] [Abstract][Full Text] [Related]
17. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403. Kowalczyk M; Borcz B; Płochocka D; Bardowski J Acta Biochim Pol; 2007; 54(1):71-8. PubMed ID: 17356715 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the palindromic order of the TtgR operator enhances binding cooperativity. Krell T; Terán W; Mayorga OL; Rivas G; Jiménez M; Daniels C; Molina-Henares AJ; Martínez-Bueno M; Gallegos MT; Ramos JL J Mol Biol; 2007 Jun; 369(5):1188-99. PubMed ID: 17498746 [TBL] [Abstract][Full Text] [Related]
19. CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in Sharma K; Sultana T; Dahms TES; Dillon JR Can J Microbiol; 2020 Dec; 66(12):723-732. PubMed ID: 32762636 [TBL] [Abstract][Full Text] [Related]
20. A novel bipartite mode of binding of M. smegmatis topoisomerase I to its recognition sequence. Sikder D; Nagaraja V J Mol Biol; 2001 Sep; 312(2):347-57. PubMed ID: 11554791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]