BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17011581)

  • 1. Evaluation of energetic and dynamic coupling networks in a PDZ domain protein.
    Fuentes EJ; Gilmore SA; Mauldin RV; Lee AL
    J Mol Biol; 2006 Dec; 364(3):337-51. PubMed ID: 17011581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of peptide recognition by the second PDZ domain of human protein tyrosine phosphatase 1E.
    Milev S; Bjelić S; Georgiev O; Jelesarov I
    Biochemistry; 2007 Jan; 46(4):1064-78. PubMed ID: 17240990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL.
    Walma T; Spronk CA; Tessari M; Aelen J; Schepens J; Hendriks W; Vuister GW
    J Mol Biol; 2002 Mar; 316(5):1101-10. PubMed ID: 11884147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESI-MS and FTIR studies of the interaction between the second PDZ domain of hPTP1E and target peptides.
    Papp R; Ekiel I; English AM
    Biochem Cell Biol; 2003 Apr; 81(2):71-80. PubMed ID: 12870871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An allosteric intramolecular PDZ-PDZ interaction modulates PTP-BL PDZ2 binding specificity.
    van den Berk LC; Landi E; Walma T; Vuister GW; Dente L; Hendriks WJ
    Biochemistry; 2007 Nov; 46(47):13629-37. PubMed ID: 17979300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-regulated affinity of the third PDZ domain in the phosphotyrosine phosphatase PTP-BL for cysteine-containing target peptides.
    van den Berk LC; Landi E; Harmsen E; Dente L; Hendriks WJ
    FEBS J; 2005 Jul; 272(13):3306-16. PubMed ID: 15978037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain.
    Fuentes EJ; Der CJ; Lee AL
    J Mol Biol; 2004 Jan; 335(4):1105-15. PubMed ID: 14698303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the second PDZ domain of SAP97 in complex with a GluR-A C-terminal peptide.
    von Ossowski I; Oksanen E; von Ossowski L; Cai C; Sundberg M; Goldman A; Keinänen K
    FEBS J; 2006 Nov; 273(22):5219-29. PubMed ID: 17069616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of long-range interactions in a PDZ domain by NMR, kinetics, and protein engineering.
    Gianni S; Walma T; Arcovito A; Calosci N; Bellelli A; Engström A; Travaglini-Allocatelli C; Brunori M; Jemth P; Vuister GW
    Structure; 2006 Dec; 14(12):1801-9. PubMed ID: 17161370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDZ domains: folding and binding.
    Jemth P; Gianni S
    Biochemistry; 2007 Jul; 46(30):8701-8. PubMed ID: 17620015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the PDZ2 domain from cytosolic human phosphatase hPTP1E complexed with a peptide reveals contribution of the beta2-beta3 loop to PDZ domain-ligand interactions.
    Kozlov G; Banville D; Gehring K; Ekiel I
    J Mol Biol; 2002 Jul; 320(4):813-20. PubMed ID: 12095257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic and nuclear magnetic resonance evaluation of the impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E.
    Zhang J; Sapienza PJ; Ke H; Chang A; Hengel SR; Wang H; Phillips GN; Lee AL
    Biochemistry; 2010 Nov; 49(43):9280-91. PubMed ID: 20839809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of the PDZ2 domain from human phosphatase hPTP1E and its interactions with C-terminal peptides from the Fas receptor.
    Kozlov G; Gehring K; Ekiel I
    Biochemistry; 2000 Mar; 39(10):2572-80. PubMed ID: 10704206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range dynamic effects of point mutations propagate through side chains in the serine protease inhibitor eglin c.
    Clarkson MW; Lee AL
    Biochemistry; 2004 Oct; 43(39):12448-58. PubMed ID: 15449934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2.
    Bocchinfuso G; Stella L; Martinelli S; Flex E; Carta C; Pantaleoni F; Pispisa B; Venanzi M; Tartaglia M; Palleschi A
    Proteins; 2007 Mar; 66(4):963-74. PubMed ID: 17177198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity.
    Kachel N; Erdmann KS; Kremer W; Wolff P; Gronwald W; Heumann R; Kalbitzer HR
    J Mol Biol; 2003 Nov; 334(1):143-55. PubMed ID: 14596806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution.
    Barr AJ; Debreczeni JE; Eswaran J; Knapp S
    Proteins; 2006 Jun; 63(4):1132-6. PubMed ID: 16534812
    [No Abstract]   [Full Text] [Related]  

  • 18. Hydrophobic core fluidity of homologous protein domains: relation of side-chain dynamics to core composition and packing.
    Best RB; Rutherford TJ; Freund SM; Clarke J
    Biochemistry; 2004 Feb; 43(5):1145-55. PubMed ID: 14756550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy.
    Frederick KK; Kranz JK; Wand AJ
    Biochemistry; 2006 Aug; 45(32):9841-8. PubMed ID: 16893184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in calmodulin main-chain dynamics upon ligand binding revealed by cross-correlated NMR relaxation measurements.
    Wang T; Frederick KK; Igumenova TI; Wand AJ; Zuiderweg ER
    J Am Chem Soc; 2005 Jan; 127(3):828-9. PubMed ID: 15656608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.