These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 17011619)
1. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Alves CM; Yang Y; Carnes DL; Ong JL; Sylvia VL; Dean DD; Agrawal CM; Reis RL Biomaterials; 2007 Jan; 28(2):307-15. PubMed ID: 17011619 [TBL] [Abstract][Full Text] [Related]
2. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408 [TBL] [Abstract][Full Text] [Related]
3. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516 [TBL] [Abstract][Full Text] [Related]
4. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. Tuzlakoglu K; Pashkuleva I; Rodrigues MT; Gomes ME; van Lenthe GH; Müller R; Reis RL J Biomed Mater Res A; 2010 Jan; 92(1):369-77. PubMed ID: 19191314 [TBL] [Abstract][Full Text] [Related]
5. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. Yang Y; Cavin R; Ong JL J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894 [TBL] [Abstract][Full Text] [Related]
6. Plasma surface modification of poly(D,L-lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types. Alves CM; Yang Y; Marton D; Carnes DL; Ong JL; Sylvia VL; Dean DD; Reis RL; Agrawal CM J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):59-66. PubMed ID: 18360882 [TBL] [Abstract][Full Text] [Related]
7. An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats. Marques AP; Reis RL; Hunt JA Macromol Biosci; 2005 Aug; 5(8):775-85. PubMed ID: 16080170 [TBL] [Abstract][Full Text] [Related]
8. Preliminary study on human protein adsorption and leukocyte adhesion to starch-based biomaterials. Alves CM; Reis RL; Hunt JA J Mater Sci Mater Med; 2003 Feb; 14(2):157-65. PubMed ID: 15348488 [TBL] [Abstract][Full Text] [Related]
12. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells. Marques AP; Cruz HR; Coutinho OP; Reis RL J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112 [TBL] [Abstract][Full Text] [Related]
13. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514 [TBL] [Abstract][Full Text] [Related]
14. In vitro assessment of the enzymatic degradation of several starch based biomaterials. Azevedo HS; Gama FM; Reis RL Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899 [TBL] [Abstract][Full Text] [Related]
15. Nanostructured surfaces for bone biotemplating applications. Popat KC; Daniels RH; Dubrow RS; Hardev V; Desai TA J Orthop Res; 2006 Apr; 24(4):619-27. PubMed ID: 16514643 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. Smith IO; Baumann MJ; McCabe LR J Biomed Mater Res A; 2004 Sep; 70(3):436-41. PubMed ID: 15293317 [TBL] [Abstract][Full Text] [Related]
17. Influence of hydroxyapatite microstructure on human bone cell response. Rouahi M; Gallet O; Champion E; Dentzer J; Hardouin P; Anselme K J Biomed Mater Res A; 2006 Aug; 78(2):222-35. PubMed ID: 16628709 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells. Pashkuleva I; Marques AP; Vaz F; Reis RL J Mater Sci Mater Med; 2005 Jan; 16(1):81-92. PubMed ID: 15754148 [TBL] [Abstract][Full Text] [Related]
19. Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study. López-Pérez PM; da Silva RM; Sousa RA; Pashkuleva I; Reis RL Acta Biomater; 2010 Sep; 6(9):3704-12. PubMed ID: 20226283 [TBL] [Abstract][Full Text] [Related]
20. The effect of chitosan on the in vitro biological performance of chitosan-poly(butylene succinate) blends. Coutinho DF; Pashkuleva IH; Alves CM; Marques AP; Neves NM; Reis RL Biomacromolecules; 2008 Apr; 9(4):1139-45. PubMed ID: 18330991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]