BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17011619)

  • 1. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.
    Alves CM; Yang Y; Carnes DL; Ong JL; Sylvia VL; Dean DD; Agrawal CM; Reis RL
    Biomaterials; 2007 Jan; 28(2):307-15. PubMed ID: 17011619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.
    Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB
    Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation.
    Tuzlakoglu K; Pashkuleva I; Rodrigues MT; Gomes ME; van Lenthe GH; Müller R; Reis RL
    J Biomed Mater Res A; 2010 Jan; 92(1):369-77. PubMed ID: 19191314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein adsorption on titanium surfaces and their effect on osteoblast attachment.
    Yang Y; Cavin R; Ong JL
    J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma surface modification of poly(D,L-lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types.
    Alves CM; Yang Y; Marton D; Carnes DL; Ong JL; Sylvia VL; Dean DD; Reis RL; Agrawal CM
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):59-66. PubMed ID: 18360882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats.
    Marques AP; Reis RL; Hunt JA
    Macromol Biosci; 2005 Aug; 5(8):775-85. PubMed ID: 16080170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary study on human protein adsorption and leukocyte adhesion to starch-based biomaterials.
    Alves CM; Reis RL; Hunt JA
    J Mater Sci Mater Med; 2003 Feb; 14(2):157-65. PubMed ID: 15348488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment of human primary osteoblast cells to modified polyethylene surfaces.
    Poulsson AH; Mitchell SA; Davidson MR; Johnstone AJ; Emmison N; Bradley RH
    Langmuir; 2009 Apr; 25(6):3718-27. PubMed ID: 19275183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion.
    Swan EE; Popat KC; Desai TA
    Biomaterials; 2005 May; 26(14):1969-76. PubMed ID: 15576171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface structural investigation of starch-based biomaterials.
    Pashkuleva I; Azevedo HS; Reis RL
    Macromol Biosci; 2008 Feb; 8(2):210-9. PubMed ID: 17849430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells.
    Marques AP; Cruz HR; Coutinho OP; Reis RL
    J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured surfaces for bone biotemplating applications.
    Popat KC; Daniels RH; Dubrow RS; Hardev V; Desai TA
    J Orthop Res; 2006 Apr; 24(4):619-27. PubMed ID: 16514643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials.
    Smith IO; Baumann MJ; McCabe LR
    J Biomed Mater Res A; 2004 Sep; 70(3):436-41. PubMed ID: 15293317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hydroxyapatite microstructure on human bone cell response.
    Rouahi M; Gallet O; Champion E; Dentzer J; Hardouin P; Anselme K
    J Biomed Mater Res A; 2006 Aug; 78(2):222-35. PubMed ID: 16628709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells.
    Pashkuleva I; Marques AP; Vaz F; Reis RL
    J Mater Sci Mater Med; 2005 Jan; 16(1):81-92. PubMed ID: 15754148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study.
    López-Pérez PM; da Silva RM; Sousa RA; Pashkuleva I; Reis RL
    Acta Biomater; 2010 Sep; 6(9):3704-12. PubMed ID: 20226283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of chitosan on the in vitro biological performance of chitosan-poly(butylene succinate) blends.
    Coutinho DF; Pashkuleva IH; Alves CM; Marques AP; Neves NM; Reis RL
    Biomacromolecules; 2008 Apr; 9(4):1139-45. PubMed ID: 18330991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.