These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 17011625)
1. Compensation of endogenous IgG mediated inhibition of antibody-dependent cellular cytotoxicity by glyco-engineering of therapeutic antibodies. Nechansky A; Schuster M; Jost W; Siegl P; Wiederkum S; Gorr G; Kircheis R Mol Immunol; 2007 Mar; 44(7):1815-7. PubMed ID: 17011625 [TBL] [Abstract][Full Text] [Related]
2. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Ferrara C; Brünker P; Suter T; Moser S; Püntener U; Umaña P Biotechnol Bioeng; 2006 Apr; 93(5):851-61. PubMed ID: 16435400 [TBL] [Abstract][Full Text] [Related]
3. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Iida S; Misaka H; Inoue M; Shibata M; Nakano R; Yamane-Ohnuki N; Wakitani M; Yano K; Shitara K; Satoh M Clin Cancer Res; 2006 May; 12(9):2879-87. PubMed ID: 16675584 [TBL] [Abstract][Full Text] [Related]
4. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548 [TBL] [Abstract][Full Text] [Related]
5. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Scallon BJ; Tam SH; McCarthy SG; Cai AN; Raju TS Mol Immunol; 2007 Mar; 44(7):1524-34. PubMed ID: 17045339 [TBL] [Abstract][Full Text] [Related]
6. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Preithner S; Elm S; Lippold S; Locher M; Wolf A; da Silva AJ; Baeuerle PA; Prang NS Mol Immunol; 2006 Mar; 43(8):1183-93. PubMed ID: 16102830 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Niwa R; Hatanaka S; Shoji-Hosaka E; Sakurada M; Kobayashi Y; Uehara A; Yokoi H; Nakamura K; Shitara K Clin Cancer Res; 2004 Sep; 10(18 Pt 1):6248-55. PubMed ID: 15448014 [TBL] [Abstract][Full Text] [Related]
8. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Davies J; Jiang L; Pan LZ; LaBarre MJ; Anderson D; Reff M Biotechnol Bioeng; 2001 Aug; 74(4):288-94. PubMed ID: 11410853 [TBL] [Abstract][Full Text] [Related]
9. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310 [TBL] [Abstract][Full Text] [Related]
10. Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies. Barbin K; Stieglmaier J; Saul D; Stieglmaier K; Stockmeyer B; Pfeiffer M; Lang P; Fey GH J Immunother; 2006; 29(2):122-33. PubMed ID: 16531813 [TBL] [Abstract][Full Text] [Related]
11. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. Niwa R; Natsume A; Uehara A; Wakitani M; Iida S; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):151-60. PubMed ID: 16219319 [TBL] [Abstract][Full Text] [Related]
12. Tandemly repeated Fc domain augments binding avidities of antibodies for Fcgamma receptors, resulting in enhanced antibody-dependent cellular cytotoxicity. Nagashima H; Tezuka T; Tsuchida W; Maeda H; Kohroki J; Masuho Y Mol Immunol; 2008 May; 45(10):2752-63. PubMed ID: 18353438 [TBL] [Abstract][Full Text] [Related]
13. Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314. Kircheis R; Halanek N; Koller I; Jost W; Schuster M; Gorr G; Hajszan K; Nechansky A MAbs; 2012; 4(4):532-41. PubMed ID: 22665069 [TBL] [Abstract][Full Text] [Related]
14. Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effector function of therapeutic antibodies. Cheng ZJ; Garvin D; Paguio A; Moravec R; Engel L; Fan F; Surowy T J Immunol Methods; 2014 Dec; 414():69-81. PubMed ID: 25086226 [TBL] [Abstract][Full Text] [Related]
15. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded antibody comprising a single-chain antibody linked the antibody constant region. Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):93-103. PubMed ID: 16236307 [TBL] [Abstract][Full Text] [Related]
16. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Schuster M; Umana P; Ferrara C; Brünker P; Gerdes C; Waxenecker G; Wiederkum S; Schwager C; Loibner H; Himmler G; Mudde GC Cancer Res; 2005 Sep; 65(17):7934-41. PubMed ID: 16140965 [TBL] [Abstract][Full Text] [Related]
17. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. Pereira NA; Chan KF; Lin PC; Song Z MAbs; 2018 Jul; 10(5):693-711. PubMed ID: 29733746 [TBL] [Abstract][Full Text] [Related]
19. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Stavenhagen JB; Gorlatov S; Tuaillon N; Rankin CT; Li H; Burke S; Huang L; Vijh S; Johnson S; Bonvini E; Koenig S Cancer Res; 2007 Sep; 67(18):8882-90. PubMed ID: 17875730 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo characterization of MDX-1401 for therapy of malignant lymphoma. Cardarelli PM; Moldovan-Loomis MC; Preston B; Black A; Passmore D; Chen TH; Chen S; Liu J; Kuhne MR; Srinivasan M; Assad A; Witte A; Graziano RF; King DJ Clin Cancer Res; 2009 May; 15(10):3376-83. PubMed ID: 19401346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]