These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17011798)

  • 1. Fluid temperatures during radiofrequency use in shoulder arthroscopy: a cadaveric study.
    McKeon B; Baltz MS; Curtis A; Scheller A
    J Shoulder Elbow Surg; 2007; 16(1):107-11. PubMed ID: 17011798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo temperature measurement in the subacromial bursa during arthroscopic subacromial decompression.
    Barker SL; Johnstone AJ; Kumar K
    J Shoulder Elbow Surg; 2012 Jun; 21(6):804-7. PubMed ID: 22197161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glenohumeral volume reduction in arthroscopic shoulder reconstruction: a cadaveric analysis of suture plication and thermal capsulorrhaphy.
    Karas SG; Creighton RA; DeMorat GJ
    Arthroscopy; 2004 Feb; 20(2):179-84. PubMed ID: 14760352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of thermal capsulorrhaphy and rotator interval closure on multidirectional laxity in the glenohumeral joint: a cadaveric biomechanical study.
    Wolf RS; Zheng N; Iero J; Weichel D
    Arthroscopy; 2004 Dec; 20(10):1044-9. PubMed ID: 15592233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate effect of thermal capsulorrhaphy on glenohumeral joint mobility.
    Chang JH; Hsu AT; Lee SJ; Chang GL
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):572-8. PubMed ID: 15234480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid temperatures during arthroscopic subacromial decompression using a radiofrequency probe.
    Davies H; Wynn-Jones H; De Smet T; Johnson P; Sampath S; Sjølin S
    Acta Orthop Belg; 2009 Apr; 75(2):153-7. PubMed ID: 19492553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric change in the shoulder capsule after open inferior capsular shift versus arthroscopic thermal capsular shrinkage: a cadaveric model.
    Luke TA; Rovner AD; Karas SG; Hawkins RJ; Plancher KD
    J Shoulder Elbow Surg; 2004; 13(2):146-9. PubMed ID: 14997089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing intra-articular fluid temperature profiles with radiofrequency ablation.
    Zoric BB; Horn N; Braun S; Millett PJ
    J Bone Joint Surg Am; 2009 Oct; 91(10):2448-54. PubMed ID: 19797581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arthroscopic suture anchor capsulorrhaphy versus labral-based suture capsulorrhaphy in a cadaveric model.
    Gillis RC; Donaldson CT; Kim H; Love JM; Dreese JC
    Arthroscopy; 2012 Nov; 28(11):1615-21. PubMed ID: 22943847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penetration of cryotherapy in treatment after shoulder arthroscopy.
    Levy AS; Kelly B; Lintner S; Speer K
    Arthroscopy; 1997 Aug; 13(4):461-4. PubMed ID: 9276053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrothermal arthroscopic shoulder capsulorrhaphy: a minimum 2-year follow-up.
    Hawkins RJ; Krishnan SG; Karas SG; Noonan TJ; Horan MP
    Am J Sports Med; 2007 Sep; 35(9):1484-8. PubMed ID: 17456642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axillary nerve temperatures during radiofrequency capsulorrhaphy of the shoulder.
    Gryler EC; Greis PE; Burks RT; West J
    Arthroscopy; 2001 Jul; 17(6):567-72. PubMed ID: 11447541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Arthroscopic capsular release in frozen shoulder syndrome].
    Musil D; Sadovský P; Stehlík J; Filip L; Vodicka Z
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):98-103. PubMed ID: 19439128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glenohumeral chondrolysis after shoulder arthroscopy with thermal capsulorrhaphy.
    Good CR; Shindle MK; Kelly BT; Wanich T; Warren RF
    Arthroscopy; 2007 Jul; 23(7):797.e1-5. PubMed ID: 17637423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subacromial temperature profile during bipolar radiofrequency use in shoulder arthroscopy. Comparison of Coblation
    Huynh V; Barbier O; Bajard X; Bouchard A; Ollat D; Versier G
    Orthop Traumatol Surg Res; 2017 Jun; 103(4):489-491. PubMed ID: 28363877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of arthroscopic capsulorrhaphy in line with the fibers of the anterior band of the inferior glenohumeral ligament.
    Shapiro TA; Gupta A; McGarry MH; Tibone JE; Lee TQ
    Am J Sports Med; 2012 Mar; 40(3):672-80. PubMed ID: 22178582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of articular malposition after total shoulder arthroplasty on glenohumeral translations, range of motion, and subacromial impingement.
    Williams GR; Wong KL; Pepe MD; Tan V; Silverberg D; Ramsey ML; Karduna A; Iannotti JP
    J Shoulder Elbow Surg; 2001; 10(5):399-409. PubMed ID: 11641695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of radiofrequency energy on glenohumeral fluid temperature during shoulder arthroscopy.
    Good CR; Shindle MK; Griffith MH; Wanich T; Warren RF
    J Bone Joint Surg Am; 2009 Feb; 91(2):429-34. PubMed ID: 19181988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature.
    Lu Y; Bogdanske J; Lopez M; Cole BJ; Markel MD
    Arthroscopy; 2005 May; 21(5):592-6. PubMed ID: 15891727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature along the axillary nerve during radiofrequency-induced thermal capsular shrinkage.
    McCarty EC; Warren RF; Deng XH; Craig EV; Potter H
    Am J Sports Med; 2004 Jun; 32(4):909-14. PubMed ID: 15150036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.