These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17012058)

  • 1. Neurotransmitters and motor activity: effects on functional recovery after brain injury.
    Goldstein LB
    NeuroRx; 2006 Oct; 3(4):451-7. PubMed ID: 17012058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor recovery from cortical injury is accompanied by changes on norepinephrine and serotonin levels in the dentate gyrus and pons.
    Ramos-Languren LE; González-Piña R; Montes S; Chávez-García N; Ávila-Luna A; Barón-Flores V; Ríos C
    Behav Brain Res; 2016 Jan; 297():297-306. PubMed ID: 26454240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological approach to functional reorganization: the role of norepinephrine.
    Goldstein LB
    Rev Neurol (Paris); 1999; 155(9):731-6. PubMed ID: 10528358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologic and plastic effects of experimental traumatic brain injury treatment paradigms and their relevance to clinical rehabilitation.
    Garcia AN; Shah MA; Dixon CE; Wagner AK; Kline AE
    PM R; 2011 Jun; 3(6 Suppl 1):S18-27. PubMed ID: 21703575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical plasticity and rehabilitation.
    Moucha R; Kilgard MP
    Prog Brain Res; 2006; 157():111-122. PubMed ID: 17167905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overground gait training promotes functional recovery and cortical neuroplasticity in an incomplete spinal cord injury model.
    Ilha J; Meireles A; de Freitas GR; do Espírito Santo CC; Machado-Pereira NAMM; Swarowsky A; Santos ARS
    Life Sci; 2019 Sep; 232():116627. PubMed ID: 31276690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of common drugs and related factors on stroke outcome.
    Goldstein LB
    Curr Opin Neurol; 1997 Feb; 10(1):52-7. PubMed ID: 9099528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of adaptive plasticity in recovery of function after damage to motor cortex.
    Nudo RJ; Plautz EJ; Frost SB
    Muscle Nerve; 2001 Aug; 24(8):1000-19. PubMed ID: 11439375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation.
    Bashir S; Mizrahi I; Weaver K; Fregni F; Pascual-Leone A
    PM R; 2010 Dec; 2(12 Suppl 2):S253-68. PubMed ID: 21172687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.
    Inoue T; Lin A; Ma X; McKenna SL; Creasey GH; Manley GT; Ferguson AR; Bresnahan JC; Beattie MS
    Exp Neurol; 2013 Oct; 248():136-47. PubMed ID: 23770071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physiological basis for the development of rehabilitative strategies for spinally injured patients.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Am Paraplegia Soc; 1991 Oct; 14(4):150-7. PubMed ID: 1683668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic analyses reveal impaired locomotion following injury of the motor cortex in mice.
    Ueno M; Yamashita T
    Exp Neurol; 2011 Aug; 230(2):280-90. PubMed ID: 21619878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinational Approach of Genetic SHP-1 Suppression and Voluntary Exercise Promotes Corticospinal Tract Sprouting and Motor Recovery Following Brain Injury.
    Tanaka T; Ito T; Sumizono M; Ono M; Kato N; Honma S; Ueno M
    Neurorehabil Neural Repair; 2020 Jun; 34(6):558-570. PubMed ID: 32441214
    [No Abstract]   [Full Text] [Related]  

  • 16. Brain plasticity and rehabilitation in stroke patients.
    Hara Y
    J Nippon Med Sch; 2015; 82(1):4-13. PubMed ID: 25797869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of cortical plasticity and recovery from brain injury.
    Kolb B
    Phys Med Rehabil Clin N Am; 2003 Feb; 14(1 Suppl):S7-25, viii. PubMed ID: 12625635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals.
    Rossignol S
    Philos Trans R Soc Lond B Biol Sci; 2006 Sep; 361(1473):1647-71. PubMed ID: 16939980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs.
    Brustein E; Rossignol S
    J Neurophysiol; 1999 Apr; 81(4):1513-30. PubMed ID: 10200188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage.
    Feeney DM; Weisend MP; Kline AE
    J Neural Transplant Plast; 1993; 4(3):199-213. PubMed ID: 8018752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.