BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17012285)

  • 1. An evolutionary 'intermediate state' of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu.
    Arita M; Suematsu T; Osanai A; Inaba T; Kamiya H; Kita K; Sisido M; Watanabe Y; Ohtsuki T
    Nucleic Acids Res; 2006; 34(18):5291-9. PubMed ID: 17012285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication of
    Sato A; Suematsu T; Aihara KK; Kita K; Suzuki T; Watanabe K; Ohtsuki T; Watanabe YI
    Biochem J; 2017 Mar; 474(6):957-969. PubMed ID: 28130490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein extension to shorten RNA: elongated elongation factor-Tu recognizes the D-arm of T-armless tRNAs in nematode mitochondria.
    Sakurai M; Watanabe Y; Watanabe K; Ohtsuki T
    Biochem J; 2006 Oct; 399(2):249-56. PubMed ID: 16859488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-armless tRNAs and elongated elongation factor Tu.
    Ohtsuki T; Watanabe Y
    IUBMB Life; 2007 Feb; 59(2):68-75. PubMed ID: 17454297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2.
    Suematsu T; Sato A; Sakurai M; Watanabe K; Ohtsuki T
    Nucleic Acids Res; 2005; 33(15):4683-91. PubMed ID: 16113240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique serine-specific elongation factor Tu found in nematode mitochondria.
    Ohtsuki T; Sato A; Watanabe Y; Watanabe K
    Nat Struct Biol; 2002 Sep; 9(9):669-73. PubMed ID: 12145639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An "elongated" translation elongation factor Tu for truncated tRNAs in nematode mitochondria.
    Ohtsuki T; Watanabe Yi ; Takemoto C; Kawai G; Ueda T; Kita K; Kojima S; Kaziro Y; Nyborg J; Watanabe K
    J Biol Chem; 2001 Jun; 276(24):21571-7. PubMed ID: 11262399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the residues involved in the unique serine specificity of Caenorhabditis elegans mitochondrial EF-Tu2.
    Sato A; Watanabe Y; Suzuki T; Komiyama M; Watanabe K; Ohtsuki T
    Biochemistry; 2006 Sep; 45(36):10920-7. PubMed ID: 16953577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm.
    Sakurai M; Ohtsuki T; Watanabe K
    Nucleic Acids Res; 2005; 33(5):1653-61. PubMed ID: 15781491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining a smaller RNA substrate for elongation factor Tu.
    Nazarenko IA; Uhlenbeck OC
    Biochemistry; 1995 Feb; 34(8):2545-52. PubMed ID: 7532998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors.
    Akama K; Christian BE; Jones CN; Ueda T; Takeuchi N; Spremulli LL
    Biochim Biophys Acta; 2010; 1802(7-8):692-8. PubMed ID: 20435138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding.
    Schrader JM; Chapman SJ; Uhlenbeck OC
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5215-20. PubMed ID: 21402928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Recognition between tRNA and elongation factor Tu.
    Eargle J; Black AA; Sethi A; Trabuco LG; Luthey-Schulten Z
    J Mol Biol; 2008 Apr; 377(5):1382-405. PubMed ID: 18336835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of thermodynamically relevant interactions between EF-Tu and backbone elements of tRNA.
    Pleiss JA; Uhlenbeck OC
    J Mol Biol; 2001 May; 308(5):895-905. PubMed ID: 11352580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translation activity of mitochondrial tRNA with unusual secondary structure.
    Hanada T; Suzuki T; Watanabe K
    Nucleic Acids Symp Ser; 2000; (44):249-50. PubMed ID: 12903362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intricacies and surprises of nuclear-mitochondrial co-evolution.
    Willkomm DK; Hartmann RK
    Biochem J; 2006 Oct; 399(2):e7-9. PubMed ID: 16987107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu.
    Hunter SE; Spremulli LL
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs.
    Hunter SE; Spremulli LL
    RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation.
    Iwane Y; Kimura H; Katoh T; Suga H
    Nucleic Acids Res; 2021 Nov; 49(19):10807-10817. PubMed ID: 33997906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.