These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17012313)

  • 1. Passive stiffness in Drosophila indirect flight muscle reduced by disrupting paramyosin phosphorylation, but not by embryonic myosin S2 hinge substitution.
    Hao Y; Miller MS; Swank DM; Liu H; Bernstein SI; Maughan DW; Pollack GH
    Biophys J; 2006 Dec; 91(12):4500-6. PubMed ID: 17012313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paramyosin phosphorylation site disruption affects indirect flight muscle stiffness and power generation in Drosophila melanogaster.
    Liu H; Miller MS; Swank DM; Kronert WA; Maughan DW; Bernstein SI
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10522-7. PubMed ID: 16020538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics.
    Miller MS; Dambacher CM; Knowles AF; Braddock JM; Farman GP; Irving TC; Swank DM; Bernstein SI; Maughan DW
    Biophys J; 2009 May; 96(10):4132-43. PubMed ID: 19450484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of miniparamyosin causes muscle dysfunction and age-dependant myofibril degeneration in the indirect flight muscles of Drosophila melanogaster.
    Arredondo JJ; Mardahl-Dumesnil M; Cripps RM; Cervera M; Bernstein SI
    J Muscle Res Cell Motil; 2001; 22(3):287-99. PubMed ID: 11763201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive stiffness of Drosophila IFM myofibrils: a novel, high accuracy measurement method.
    Hao Y; Bernstein SI; Pollack GH
    J Muscle Res Cell Motil; 2004; 25(4-5):359-66. PubMed ID: 15548865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle.
    Kulke M; Neagoe C; Kolmerer B; Minajeva A; Hinssen H; Bullard B; Linke WA
    J Cell Biol; 2001 Sep; 154(5):1045-57. PubMed ID: 11535621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in Drosophila myosin rod cause defects in myofibril assembly.
    Salvi SS; Kumar RP; Ramachandra NB; Sparrow JC; Nongthomba U
    J Mol Biol; 2012 May; 419(1-2):22-40. PubMed ID: 22370558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length.
    Suggs JA; Cammarato A; Kronert WA; Nikkhoy M; Dambacher CM; Megighian A; Bernstein SI
    J Mol Biol; 2007 Apr; 367(5):1312-29. PubMed ID: 17316684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants.
    Kreuz AJ; Simcox A; Maughan D
    J Cell Biol; 1996 Nov; 135(3):673-87. PubMed ID: 8909542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head.
    Cripps RM; Suggs JA; Bernstein SI
    EMBO J; 1999 Apr; 18(7):1793-804. PubMed ID: 10202143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics.
    Barton B; Ayer G; Maughan DW; Vigoreaux JO
    J Muscle Res Cell Motil; 2007; 28(4-5):219-30. PubMed ID: 17912596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin transgene.
    Barton B; Ayer G; Heymann N; Maughan DW; Lehmann FO; Vigoreaux JO
    J Exp Biol; 2005 Feb; 208(Pt 3):549-60. PubMed ID: 15671343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation-dependent power output of transgenic flies: an integrated study.
    Dickinson MH; Hyatt CJ; Lehmann FO; Moore JR; Reedy MC; Simcox A; Tohtong R; Vigoreaux JO; Yamashita H; Maughan DW
    Biophys J; 1997 Dec; 73(6):3122-34. PubMed ID: 9414224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems.
    Vigoreaux JO
    Bioessays; 2001 Nov; 23(11):1047-63. PubMed ID: 11746221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight.
    Wang Q; Newhard CS; Ramanath S; Sheppard D; Swank DM
    J Exp Biol; 2014 Jan; 217(Pt 2):290-8. PubMed ID: 24115062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchin-klp, a novel Drosophila indirect flight muscle protein, has both myosin dependent and independent isoforms.
    Patel SR; Saide JD
    J Muscle Res Cell Motil; 2005; 26(4-5):213-24. PubMed ID: 16270160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.
    Orfanos Z; Sparrow JC
    J Cell Sci; 2013 Jan; 126(Pt 1):139-48. PubMed ID: 23178940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature's strategy for optimizing power generation in insect flight muscle.
    Maughan D; Vigoreaux J
    Adv Exp Med Biol; 2005; 565():157-66; discussion 167, 371-7. PubMed ID: 16106973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sallimus and the dynamics of sarcomere assembly in Drosophila flight muscles.
    Orfanos Z; Leonard K; Elliott C; Katzemich A; Bullard B; Sparrow J
    J Mol Biol; 2015 Jun; 427(12):2151-8. PubMed ID: 25868382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila.
    Polyák E; Standiford DM; Yakopson V; Emerson CP; Franzini-Armstrong C
    J Mol Biol; 2003 Aug; 331(5):1077-91. PubMed ID: 12927543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.