These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17012374)

  • 1. Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors?
    Baurain D; Brinkmann H; Philippe H
    Mol Biol Evol; 2007 Jan; 24(1):6-9. PubMed ID: 17012374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics.
    Brinkmann H; van der Giezen M; Zhou Y; Poncelin de Raucourt G; Philippe H
    Syst Biol; 2005 Oct; 54(5):743-57. PubMed ID: 16243762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal evolution and the molecular signature of radiations compressed in time.
    Rokas A; Krüger D; Carroll SB
    Science; 2005 Dec; 310(5756):1933-8. PubMed ID: 16373569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting and overcoming systematic errors in genome-scale phylogenies.
    Rodríguez-Ezpeleta N; Brinkmann H; Roure B; Lartillot N; Lang BF; Philippe H
    Syst Biol; 2007 Jun; 56(3):389-99. PubMed ID: 17520503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The systematic component of phylogenetic error as a function of taxonomic sampling under parsimony.
    Debry RW
    Syst Biol; 2005 Jun; 54(3):432-40. PubMed ID: 16012109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation and base composition bias explain phylogenomic conflict in Plasmodium.
    Dávalos LM; Perkins SL
    Genomics; 2008 May; 91(5):433-42. PubMed ID: 18313259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring phylogenetic networks by the maximum parsimony criterion: a case study.
    Jin G; Nakhleh L; Snir S; Tuller T
    Mol Biol Evol; 2007 Jan; 24(1):324-37. PubMed ID: 17068107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences.
    Hundsdoerfer AK; Rubinoff D; Attié M; Wink M; Kitching IJ
    Mol Phylogenet Evol; 2009 Sep; 52(3):852-65. PubMed ID: 19482093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of "punctuated equilibrium" by bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny.
    Bokma F
    Evolution; 2008 Nov; 62(11):2718-26. PubMed ID: 18752617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling phylogenetic informativeness.
    Townsend JP
    Syst Biol; 2007 Apr; 56(2):222-31. PubMed ID: 17464879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus.
    Adamowicz SJ; Petrusek A; Colbourne JK; Hebert PD; Witt JD
    Mol Phylogenet Evol; 2009 Mar; 50(3):423-36. PubMed ID: 19124080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of phylogenomic and orthology approaches for phylogenetic inference.
    Dutilh BE; van Noort V; van der Heijden RT; Boekhout T; Snel B; Huynen MA
    Bioinformatics; 2007 Apr; 23(7):815-24. PubMed ID: 17237036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analyses of the leaf beetle genus Galerucella: evidence for host switching at speciation?
    Borghuis A; van Groenendael J; Madsen O; Ouborg J
    Mol Phylogenet Evol; 2009 Nov; 53(2):361-7. PubMed ID: 19596455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient likelihood computations with nonreversible models of evolution.
    Boussau B; Gouy M
    Syst Biol; 2006 Oct; 55(5):756-68. PubMed ID: 17060197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic signal in bone microstructure of sauropsids.
    Cubo J; Ponton F; Laurin M; de Margerie E; Castanet J
    Syst Biol; 2005 Aug; 54(4):562-74. PubMed ID: 16085575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring speciation times under an episodic molecular clock.
    Rannala B; Yang Z
    Syst Biol; 2007 Jun; 56(3):453-66. PubMed ID: 17558967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene sampling can bias multi-gene phylogenetic inferences: the relationship between red algae and green plants as a case study.
    Inagaki Y; Nakajima Y; Sato M; Sakaguchi M; Hashimoto T
    Mol Biol Evol; 2009 May; 26(5):1171-8. PubMed ID: 19246622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies.
    Agnarsson I; May-Collado LJ
    Mol Phylogenet Evol; 2008 Sep; 48(3):964-85. PubMed ID: 18590827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a molecular systematics of the Lake Baikal/Lake Tuva sponges.
    Wiens M; Wrede P; Grebenjuk VA; Kaluzhnaya OV; Belikov SI; Schröder HC; Müller WE
    Prog Mol Subcell Biol; 2009; 47():111-44. PubMed ID: 19198775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic analysis of Allium subg. Melanocrommyum infers cryptic species and demands a new sectional classification.
    Gurushidze M; Fritsch RM; Blattner FR
    Mol Phylogenet Evol; 2008 Dec; 49(3):997-1007. PubMed ID: 18824112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.