These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 17012784)
1. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase. Faehnle CR; Liu X; Pavlovsky A; Viola RE Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):962-6. PubMed ID: 17012784 [TBL] [Abstract][Full Text] [Related]
2. The structural basis for allosteric inhibition of a threonine-sensitive aspartokinase. Liu X; Pavlovsky AG; Viola RE J Biol Chem; 2008 Jun; 283(23):16216-25. PubMed ID: 18334478 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase. Marco-Marín C; Ramón-Maiques S; Tavárez S; Rubio V J Mol Biol; 2003 Nov; 334(3):459-76. PubMed ID: 14623187 [TBL] [Abstract][Full Text] [Related]
4. A new branch in the family: structure of aspartate-beta-semialdehyde dehydrogenase from Methanococcus jannaschii. Faehnle CR; Ohren JF; Viola RE J Mol Biol; 2005 Nov; 353(5):1055-68. PubMed ID: 16225889 [TBL] [Abstract][Full Text] [Related]
5. Purification, crystallization and preliminary X-ray analysis of aspartokinase III from Escherichia coli. Blanco J; Viola RE Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):352-4. PubMed ID: 11807275 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii. Hack ES; Vorobyova T; Sakash JB; West JM; Macol CP; Hervé G; Williams MK; Kantrowitz ER J Biol Chem; 2000 May; 275(21):15820-7. PubMed ID: 10748118 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of key enzyme activities involved in aspartate amino acid biosynthesis in Streptococcus bovis]. Kal'cheva EO; Shanskaia VO; Maliuta SS Biokhimiia; 1994 Jan; 59(1):96-101. PubMed ID: 8117840 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the 3' exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D. Jokela M; Eskelinen A; Pospiech H; Rouvinen J; Syväoja JE Nucleic Acids Res; 2004; 32(8):2430-40. PubMed ID: 15121900 [TBL] [Abstract][Full Text] [Related]
9. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Todone F; Brick P; Werner F; Weinzierl RO; Onesti S Mol Cell; 2001 Nov; 8(5):1137-43. PubMed ID: 11741548 [TBL] [Abstract][Full Text] [Related]
10. Crystallization and biochemical characterization of an archaeal lectin from Methanococcus voltae A3. Sivaji N; Abhinav KV; Vijayan M Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):300-304. PubMed ID: 28471363 [TBL] [Abstract][Full Text] [Related]
11. Structure of a two-domain N-terminal fragment of ribosomal protein L10 from Methanococcus jannaschii reveals a specific piece of the archaeal ribosomal stalk. Kravchenko O; Mitroshin I; Nikonov S; Piendl W; Garber M J Mol Biol; 2010 Jun; 399(2):214-20. PubMed ID: 20399793 [TBL] [Abstract][Full Text] [Related]
12. RNA-protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history. Lykke-Andersen J; Garrett RA EMBO J; 1997 Oct; 16(20):6290-300. PubMed ID: 9321408 [TBL] [Abstract][Full Text] [Related]
13. Specificity of aspartokinase III from Escherichia coli and an examination of important catalytic residues. Keng YF; Viola RE Arch Biochem Biophys; 1996 Nov; 335(1):73-81. PubMed ID: 8914836 [TBL] [Abstract][Full Text] [Related]
14. Structure and function of the FeoB G-domain from Methanococcus jannaschii. Köster S; Wehner M; Herrmann C; Kühlbrandt W; Yildiz O J Mol Biol; 2009 Sep; 392(2):405-19. PubMed ID: 19615379 [TBL] [Abstract][Full Text] [Related]
15. Cobalt(III) affinity-labeled aspartokinase. Formation of substrate and inhibitor adducts. Wright JK; Feldman J; Takahashi M Biochemistry; 1976 Aug; 15(17):3704-10. PubMed ID: 182215 [TBL] [Abstract][Full Text] [Related]
16. Exploring the molecular basis for selective binding of Mycobacterium tuberculosis Asp kinase toward its natural substrates and feedback inhibitors: a docking and molecular dynamics study. Chaitanya M; Babajan B; Anuradha CM; Naveen M; Rajasekhar C; Madhusudana P; Kumar CS J Mol Model; 2010 Aug; 16(8):1357-67. PubMed ID: 20140471 [TBL] [Abstract][Full Text] [Related]
17. Reversal of enzyme regiospecificity with alternative substrates for aspartokinase I from Escherichia coli. Angeles TS; Hunsley JR; Viola RE Biochemistry; 1992 Jan; 31(3):799-805. PubMed ID: 1731937 [TBL] [Abstract][Full Text] [Related]
18. Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine. Kotaka M; Ren J; Lockyer M; Hawkins AR; Stammers DK J Biol Chem; 2006 Oct; 281(42):31544-52. PubMed ID: 16905770 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of aspartate in Mycobacterium smegmatis. Sritharan V; Wheeler PR; Ratledge C Eur J Biochem; 1989 Apr; 180(3):587-93. PubMed ID: 2496980 [TBL] [Abstract][Full Text] [Related]
20. An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. Nielsen JS; Bøggild A; Andersen CB; Nielsen G; Boysen A; Brodersen DE; Valentin-Hansen P RNA; 2007 Dec; 13(12):2213-23. PubMed ID: 17959927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]