These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17013062)

  • 1. Advancements in prosthetic technology provide more options to amputees.
    Schaffer HM
    Lippincotts Case Manag; 2006; 11(5):282-3. PubMed ID: 17013062
    [No Abstract]   [Full Text] [Related]  

  • 2. Re: Gait and balance of transfemoral amputees using passive mechanical and microprocessor controlled prosthetic knees by Kaufman et al. [Gait and Posture 20 (2007) 489-493].
    Dillon M; Bach T
    Gait Posture; 2009 Jan; 29(1):161-2; author reply 163-4. PubMed ID: 18722125
    [No Abstract]   [Full Text] [Related]  

  • 3. With open-source arms.
    Boykin S
    Sci Am; 2008 Oct; 299(4):90-5. PubMed ID: 18847090
    [No Abstract]   [Full Text] [Related]  

  • 4. Assessment of innovation in prosthetic fitting for transfemoral amputees: A model for asking basic questions of physical and rehabilitation medicine?
    Casillas JM
    Ann Phys Rehabil Med; 2018 Sep; 61(5):277. PubMed ID: 30170764
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future of amputee rehabilitation.
    Myers C
    Rehab Manag; 1998; 11(6):50-3. PubMed ID: 10344895
    [No Abstract]   [Full Text] [Related]  

  • 10. A new methodology to measure the running biomechanics of amputees.
    Wilson JR; Asfour S; Abdelrahman KZ; Gailey R
    Prosthet Orthot Int; 2009 Sep; 33(3):218-29. PubMed ID: 19658012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transtibial prosthesis suspension systems: systematic review of literature.
    Gholizadeh H; Abu Osman NA; Eshraghi A; Ali S; Razak NA
    Clin Biomech (Bristol, Avon); 2014 Jan; 29(1):87-97. PubMed ID: 24315710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic theory, design, and preliminary evaluation of a laser scanner for shape sensing below-the-knee amputees.
    Lancaster JL; Walsh N; Faulkner V
    Med Phys; 1990; 17(2):305-10. PubMed ID: 2333056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essay: Prosthetics for athletes.
    McCarvill S
    Lancet; 2005 Dec; 366 Suppl 1():S10-1. PubMed ID: 16360728
    [No Abstract]   [Full Text] [Related]  

  • 15. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First results concerning the safety, walking, and satisfaction with an innovative, microprocessor-controlled four-axes prosthetic foot.
    Hahn A; Sreckovic I; Reiter S; Mileusnic M
    Prosthet Orthot Int; 2018 Jun; 42(3):350-356. PubMed ID: 29400252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.
    Ernst M; Altenburg B; Bellmann M; Schmalz T
    J Neuroeng Rehabil; 2017 Nov; 14(1):117. PubMed ID: 29145876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanics of cycling with a transtibial amputation: Recommendations for prosthetic design and direction for future research.
    Childers WL; Kistenberg RS; Gregor RJ
    Prosthet Orthot Int; 2009 Sep; 33(3):256-71. PubMed ID: 19658015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.