BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17013372)

  • 1. [A new method for eliminating scatter components from a digital X-ray image by later processing].
    Kato H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2006 Sep; 62(9):1359-68. PubMed ID: 17013372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging.
    Liu X; Shaw CC; Lai CJ; Wang T
    Med Phys; 2011 Jan; 38(1):23-33. PubMed ID: 21361171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributions of scatter-to-primary and signal-to-noise ratios per pixel in digital chest imaging.
    Ullman G; Sandborg M; Dance DR; Hunt R; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):355-8. PubMed ID: 15933136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAN SCATTER CORRECTION SOFTWARE REPLACE A GRID IN DR PELVIC EXAMINATIONS?
    Precht H; Mørup SD; Tingberg A; Outzen CB; Kusk KW; Nielsen RM; Midtgård M; Winther MB; Waaler D; Kusk MW
    Radiat Prot Dosimetry; 2019 Dec; 187(1):8-16. PubMed ID: 31111927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rejection and redistribution of scattered radiation in scan equalization digital radiography (SEDR): simulation with spot images.
    Liu X; Shaw CC
    Med Phys; 2007 Jul; 34(7):2718-29. PubMed ID: 17821980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.
    Kim K; Lee T; Seong Y; Lee J; Jang KE; Choi J; Choi YW; Kim HH; Shin HJ; Cha JH; Cho S; Ye JC
    Med Phys; 2015 Sep; 42(9):5342-55. PubMed ID: 26328983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations.
    Jarry G; Graham SA; Moseley DJ; Jaffray DJ; Siewerdsen JH; Verhaegen F
    Med Phys; 2006 Nov; 33(11):4320-9. PubMed ID: 17153411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep-learning-based scatter correction with water equivalent path length map for digital radiography.
    Hattori M; Tsubakiya H; Lee SH; Kanai T; Suzuki K; Yuasa T
    Radiol Phys Technol; 2024 Jun; 17(2):488-503. PubMed ID: 38696086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.
    Siewerdsen JH; Daly MJ; Bakhtiar B; Moseley DJ; Richard S; Keller H; Jaffray DA
    Med Phys; 2006 Jan; 33(1):187-97. PubMed ID: 16485425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations.
    Yang K; Li X; Liu B
    Med Phys; 2016 Mar; 43(3):1096-110. PubMed ID: 26936697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of scatter in digital mammography from physical measurements.
    Leon SM; Brateman LF; Wagner LK
    Med Phys; 2014 Jun; 41(6):061901. PubMed ID: 24877812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM.
    Al Khalifah K; Davidson R; Zhou A
    Radiol Phys Technol; 2020 Mar; 13(1):37-44. PubMed ID: 31749130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of dose reduction potential in scatter-corrected bedside chest radiography using U-net.
    Onodera S; Lee Y; Tanaka Y
    Radiol Phys Technol; 2020 Dec; 13(4):336-347. PubMed ID: 32986183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of the effect of focal spot size on contrast-detail detectability.
    Poletti J; McLean D
    Australas Phys Eng Sci Med; 2012 Mar; 35(1):41-8. PubMed ID: 22143903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the origin of scatter components transmitted through anti-scatter grids in X-ray Digital Imaging system using Monte Carlo Simulation.
    Omondi SO; Msaki PK; Ramadhan KR; Amour IS; Lugendo IJ
    Afr Health Sci; 2022 Jun; 22(2):621-628. PubMed ID: 36407382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved image quality in digital mammography with image processing.
    Baydush AH; Floyd CE
    Med Phys; 2000 Jul; 27(7):1503-8. PubMed ID: 10947253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scatter correction method for dual-energy digital mammography: Monte Carlo simulation.
    Ai K; Gao Y; Yu G
    J Xray Sci Technol; 2014; 22(5):653-71. PubMed ID: 25265925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation dose considerations in digital radiography with an anti-scatter grid: A study using adult and pediatric phantoms.
    Kawashima H; Ichikawa K; Kitao A; Matsubara T; Sugiura T; Kobayashi T; Kobayashi S
    J Appl Clin Med Phys; 2023 Sep; 24(9):e14081. PubMed ID: 37491809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.