BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 17013555)

  • 1. SET domain protein lysine methyltransferases: Structure, specificity and catalysis.
    Qian C; Zhou MM
    Cell Mol Life Sci; 2006 Dec; 63(23):2755-63. PubMed ID: 17013555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase.
    Qian C; Wang X; Manzur K; Sachchidanand ; Farooq A; Zeng L; Wang R; Zhou MM
    J Mol Biol; 2006 May; 359(1):86-96. PubMed ID: 16603186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The active site of the SET domain is constructed on a knot.
    Jacobs SA; Harp JM; Devarakonda S; Kim Y; Rastinejad F; Khorasanizadeh S
    Nat Struct Biol; 2002 Nov; 9(11):833-8. PubMed ID: 12389038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis.
    Chin HG; Patnaik D; Estève PO; Jacobsen SE; Pradhan S
    Biochemistry; 2006 Mar; 45(10):3272-84. PubMed ID: 16519522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3.
    Manzur KL; Farooq A; Zeng L; Plotnikova O; Koch AW; Sachchidanand ; Zhou MM
    Nat Struct Biol; 2003 Mar; 10(3):187-96. PubMed ID: 12567185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and catalytic mechanism of the human histone methyltransferase SET7/9.
    Xiao B; Jing C; Wilson JR; Walker PA; Vasisht N; Kelly G; Howell S; Taylor IA; Blackburn GM; Gamblin SJ
    Nature; 2003 Feb; 421(6923):652-6. PubMed ID: 12540855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins.
    Xu S; Zhong C; Zhang T; Ding J
    J Mol Cell Biol; 2011 Oct; 3(5):293-300. PubMed ID: 21724641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of p53 activity through lysine methylation.
    Chuikov S; Kurash JK; Wilson JR; Xiao B; Justin N; Ivanov GS; McKinney K; Tempst P; Prives C; Gamblin SJ; Barlev NA; Reinberg D
    Nature; 2004 Nov; 432(7015):353-60. PubMed ID: 15525938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly.
    Sampath SC; Marazzi I; Yap KL; Sampath SC; Krutchinsky AN; Mecklenbräuker I; Viale A; Rudensky E; Zhou MM; Chait BT; Tarakhovsky A
    Mol Cell; 2007 Aug; 27(4):596-608. PubMed ID: 17707231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the methylation site specificity of SET7/9.
    Couture JF; Collazo E; Hauk G; Trievel RC
    Nat Struct Mol Biol; 2006 Feb; 13(2):140-6. PubMed ID: 16415881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-alpha.
    Manzur KL; Zhou MM
    FEBS Lett; 2005 Jul; 579(17):3859-65. PubMed ID: 15978576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of SET domain proteins: a new twist on histone methylation.
    Marmorstein R
    Trends Biochem Sci; 2003 Feb; 28(2):59-62. PubMed ID: 12575990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone-modifying enzymes: encrypting an enigmatic epigenetic code.
    Couture JF; Trievel RC
    Curr Opin Struct Biol; 2006 Dec; 16(6):753-60. PubMed ID: 17070031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant SET- and RING-associated domain proteins in heterochromatinization.
    Liu S; Yu Y; Ruan Y; Meyer D; Wolff M; Xu L; Wang N; Steinmetz A; Shen WH
    Plant J; 2007 Dec; 52(5):914-26. PubMed ID: 17892444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the YibK methyltransferase from Haemophilus influenzae (HI0766): a cofactor bound at a site formed by a knot.
    Lim K; Zhang H; Tempczyk A; Krajewski W; Bonander N; Toedt J; Howard A; Eisenstein E; Herzberg O
    Proteins; 2003 Apr; 51(1):56-67. PubMed ID: 12596263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism.
    Wada K; Yamaguchi H; Harada J; Niimi K; Osumi S; Saga Y; Oh-Oka H; Tamiaki H; Fukuyama K
    J Mol Biol; 2006 Jul; 360(4):839-49. PubMed ID: 16797589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence specificity and role of proximal amino acids of the histone H3 tail on catalysis of murine G9A lysine 9 histone H3 methyltransferase.
    Chin HG; Pradhan M; Estève PO; Patnaik D; Evans TC; Pradhan S
    Biochemistry; 2005 Oct; 44(39):12998-3006. PubMed ID: 16185068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT.
    Trievel RC; Flynn EM; Houtz RL; Hurley JH
    Nat Struct Biol; 2003 Jul; 10(7):545-52. PubMed ID: 12819771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminus of Drosophila SU(VAR)3-9 mediates dimerization and regulates its methyltransferase activity.
    Eskeland R; Czermin B; Boeke J; Bonaldi T; Regula JT; Imhof A
    Biochemistry; 2004 Mar; 43(12):3740-9. PubMed ID: 15035645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A.
    Huang Y; Fang J; Bedford MT; Zhang Y; Xu RM
    Science; 2006 May; 312(5774):748-51. PubMed ID: 16601153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.