These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17013615)

  • 1. Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells.
    Provost A; Bastin G; Agathos SN; Schneider YJ
    Bioprocess Biosyst Eng; 2006 Dec; 29(5-6):349-66. PubMed ID: 17013615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic metabolic models of CHO cell cultures through minimal sets of elementary flux modes.
    Zamorano F; Vande Wouwer A; Jungers RM; Bastin G
    J Biotechnol; 2013 Apr; 164(3):409-22. PubMed ID: 22698821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-pathway model, a novel approach to simulate multiple metabolic states by reaction network-based model - Application to amino acid depletion in CHO cell culture.
    Hagrot E; Oddsdóttir HÆ; Hosta JG; Jacobsen EW; Chotteau V
    J Biotechnol; 2017 Oct; 259():235-247. PubMed ID: 28689014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic model of CHO cell metabolism.
    Nolan RP; Lee K
    Metab Eng; 2011 Jan; 13(1):108-24. PubMed ID: 20933095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
    Calmels C; McCann A; Malphettes L; Andersen MR
    Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures.
    Huang Z; Lee DY; Yoon S
    Biotechnol Bioeng; 2017 Dec; 114(12):2717-2728. PubMed ID: 28710856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures.
    Rejc Ž; Magdevska L; Tršelič T; Osolin T; Vodopivec R; Mraz J; Pavliha E; Zimic N; Cvitanović T; Rozman D; Moškon M; Mraz M
    Comput Biol Med; 2017 Sep; 88():150-160. PubMed ID: 28732234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On dynamically generating relevant elementary flux modes in a metabolic network using optimization.
    Oddsdóttir HÆ; Hagrot E; Chotteau V; Forsgren A
    J Math Biol; 2015 Oct; 71(4):903-20. PubMed ID: 25323319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards dynamic metabolic flux analysis in CHO cell cultures.
    Ahn WS; Antoniewicz MR
    Biotechnol J; 2012 Jan; 7(1):61-74. PubMed ID: 22102428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control.
    Teixeira AP; Alves C; Alves PM; Carrondo MJ; Oliveira R
    BMC Bioinformatics; 2007 Jan; 8():30. PubMed ID: 17261182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematically gap-filling the genome-scale metabolic model of CHO cells.
    Fouladiha H; Marashi SA; Li S; Li Z; Masson HO; Vaziri B; Lewis NE
    Biotechnol Lett; 2021 Jan; 43(1):73-87. PubMed ID: 33040240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How important is thermodynamics for identifying elementary flux modes?
    Peres S; Jolicœur M; Moulin C; Dague P; Schuster S
    PLoS One; 2017; 12(2):e0171440. PubMed ID: 28222104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation.
    Ghorbaniaghdam A; Henry O; Jolicoeur M
    Bioprocess Biosyst Eng; 2013 Apr; 36(4):469-87. PubMed ID: 22976819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a mathematical model for evaluating the dynamics of normal and apoptotic Chinese hamster ovary cells.
    Naderi S; Meshram M; Wei C; McConkey B; Ingalls B; Budman H; Scharer J
    Biotechnol Prog; 2011; 27(5):1197-205. PubMed ID: 21618458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism.
    Cogne G; Gros JB; Dussap CG
    Biotechnol Bioeng; 2003 Dec; 84(6):667-76. PubMed ID: 14595779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heuristic optimization of antibody production by Chinese hamster ovary cells.
    Sandadi S; Ensari S; Kearns B
    Biotechnol Prog; 2005; 21(5):1537-42. PubMed ID: 16209559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus.
    Poolman MG; Venkatesh KV; Pidcock MK; Fell DA
    Biotechnol Bioeng; 2004 Dec; 88(5):601-12. PubMed ID: 15470705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms.
    Ma H; Zeng AP
    Bioinformatics; 2003 Jan; 19(2):270-7. PubMed ID: 12538249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A macrokinetic model for myeloma cell culture based on stoichiometric balance.
    Zhou F; Bi J; Zeng AP; Yuan J
    Biotechnol Appl Biochem; 2007 Feb; 46(Pt 2):85-95. PubMed ID: 16800813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.