These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17013856)

  • 1. Fabrication and in vitro characterization of porous biodegradable composites based on phosphate glasses and oligolactide-containing polymer networks.
    Brauer DS; Rüssel C; Vogt S; Weisser J; Schnabelrauch M
    J Biomed Mater Res A; 2007 Feb; 80(2):410-20. PubMed ID: 17013856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation.
    Brauer DS; Rüssel C; Li W; Habelitz S
    J Biomed Mater Res A; 2006 May; 77(2):213-9. PubMed ID: 16392127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.
    Brauer DS; Rüssel C; Vogt S; Weisser J; Schnabelrauch M
    J Mater Sci Mater Med; 2008 Jan; 19(1):121-7. PubMed ID: 17587147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of oligolactone-based scaffolds for bone tissue engineering.
    Vogt S; Berger S; Wilke I; Larcher Y; Weisser J; Schnabelrauch M
    Biomed Mater Eng; 2005; 15(1-2):73-85. PubMed ID: 15623932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.
    Sharmin N; Hasan MS; Parsons AJ; Rudd CD; Ahmed I
    J Mech Behav Biomed Mater; 2016 Jun; 59():41-56. PubMed ID: 26745720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration.
    Navarro M; Ginebra MP; Planell JA; Zeppetelli S; Ambrosio L
    J Mater Sci Mater Med; 2004 Apr; 15(4):419-22. PubMed ID: 15332610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2) x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15).
    Foroutan F; Walters NJ; Owens GJ; Mordan NJ; Kim HW; de Leeuw NH; Knowles JC
    Biomed Mater; 2015 Aug; 10(4):045025. PubMed ID: 26306553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and in vitro cytocompatibility of Ga-bioactive glass/polymer hydrogel composites.
    Keenan TJ; Placek LM; Keenan NL; Hall MM; Wren AW
    J Biomater Appl; 2016 Oct; 31(4):553-567. PubMed ID: 27117744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties and biocompatibility effects of doping SiO
    Aldaadaa A; Al Qaysi M; Georgiou G; Ma Leeson R; Knowles JC
    J Biomater Appl; 2018 Aug; 33(2):271-280. PubMed ID: 30096999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites.
    Mohammadi MS; Ahmed I; Muja N; Almeida S; Rudd CD; Bureau MN; Nazhat SN
    Acta Biomater; 2012 Apr; 8(4):1616-26. PubMed ID: 22248526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.
    Nganga S; Zhang D; Moritz N; Vallittu PK; Hupa L
    Dent Mater; 2012 Nov; 28(11):1134-45. PubMed ID: 22925703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New macroporous calcium phosphate glass ceramic for guided bone regeneration.
    Navarro M; del Valle S; Martínez S; Zeppetelli S; Ambrosio L; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(18):4233-41. PubMed ID: 15046913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering.
    Yin Y; Ye F; Cui J; Zhang F; Li X; Yao K
    J Biomed Mater Res A; 2003 Dec; 67(3):844-55. PubMed ID: 14613233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.