BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17013886)

  • 1. Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice.
    Li LY; Wang Z; Sedý J; Quazi R; Walro JM; Frank E; Kucera J
    Dev Dyn; 2006 Nov; 235(11):3039-50. PubMed ID: 17013886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents.
    Patel TD; Kramer I; Kucera J; Niederkofler V; Jessell TM; Arber S; Snider WD
    Neuron; 2003 May; 38(3):403-16. PubMed ID: 12741988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle spindle-derived neurotrophin 3 regulates synaptic connectivity between muscle sensory and motor neurons.
    Chen HH; Tourtellotte WG; Frank E
    J Neurosci; 2002 May; 22(9):3512-9. PubMed ID: 11978828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of supernumerary muscle spindles at the expense of Golgi tendon organs in ER81-deficient mice.
    Kucera J; Cooney W; Que A; Szeder V; Stancz-Szeder H; Walro J
    Dev Dyn; 2002 Mar; 223(3):389-401. PubMed ID: 11891988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons.
    Arber S; Ladle DR; Lin JH; Frank E; Jessell TM
    Cell; 2000 May; 101(5):485-98. PubMed ID: 10850491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3.
    Ringstedt T; Copray S; Walro J; Kucera J
    Brain Res Dev Brain Res; 1998 Dec; 111(2):295-300. PubMed ID: 9838169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ETS transcription factor ER81 is required for the Pacinian corpuscle development.
    Sedý J; Tseng S; Walro JM; Grim M; Kucera J
    Dev Dyn; 2006 Apr; 235(4):1081-9. PubMed ID: 16493690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3.
    Tourtellotte WG; Milbrandt J
    Nat Genet; 1998 Sep; 20(1):87-91. PubMed ID: 9731539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord.
    Mentis GZ; Alvarez FJ; Shneider NA; Siembab VC; O'Donovan MJ
    Ann N Y Acad Sci; 2010 Jun; 1198():220-30. PubMed ID: 20536937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis.
    Tourtellotte WG; Keller-Peck C; Milbrandt J; Kucera J
    Dev Biol; 2001 Apr; 232(2):388-99. PubMed ID: 11401400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the ETS gene PEA3 in the development of motor and sensory neurons.
    Ladle DR; Frank E
    Physiol Behav; 2002 Dec; 77(4-5):571-6. PubMed ID: 12527001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.
    Shneider NA; Mentis GZ; Schustak J; O'Donovan MJ
    J Neurosci; 2009 Apr; 29(15):4719-35. PubMed ID: 19369542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of developing group Ia afferents on neurotrophin-3.
    Kucera J; Fan G; Jaenisch R; Linnarsson S; Ernfors P
    J Comp Neurol; 1995 Dec; 363(2):307-20. PubMed ID: 8642077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death.
    Oakley RA; Garner AS; Large TH; Frank E
    Development; 1995 May; 121(5):1341-50. PubMed ID: 7789265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotrophin-3 promotes the differentiation of muscle spindle afferents in the absence of peripheral targets.
    Oakley RA; Lefcort FB; Clary DO; Reichardt LF; Prevette D; Oppenheim RW; Frank E
    J Neurosci; 1997 Jun; 17(11):4262-74. PubMed ID: 9151743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of muscle spindles in the development of the monosynaptic stretch reflex.
    Wang Z; Li L; Frank E
    J Neurophysiol; 2012 Jul; 108(1):83-90. PubMed ID: 22490553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotrophin-3 and trkC in muscle are non-essential for the development of mouse muscle spindles.
    Kucera J; Fan G; Walro J; Copray S; Tessarollo L; Jaenisch R
    Neuroreport; 1998 Mar; 9(5):905-9. PubMed ID: 9579688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses.
    Hess DM; Scott MO; Potluri S; Pitts EV; Cisterni C; Balice-Gordon RJ
    J Comp Neurol; 2007 Apr; 501(4):465-82. PubMed ID: 17278135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral target specification of synaptic connectivity of muscle spindle sensory neurons with spinal motoneurons.
    Wenner P; Frank E
    J Neurosci; 1995 Dec; 15(12):8191-8. PubMed ID: 8613753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3.
    Wright DE; Zhou L; Kucera J; Snider WD
    Neuron; 1997 Sep; 19(3):503-17. PubMed ID: 9331344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.