These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17014092)

  • 1. Modulating fluorescence resonance energy transfer in conjugated liposomes.
    Li X; McCarroll M; Kohli P
    Langmuir; 2006 Oct; 22(21):8615-7. PubMed ID: 17014092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer in polydiacetylene liposomes.
    Li X; Matthews S; Kohli P
    J Phys Chem B; 2008 Oct; 112(42):13263-72. PubMed ID: 18816092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication toward a simple strategy to generate efficiency-tunable fluorescence resonance energy transfer emission: intertwining medium-polarity-sensitive intramolecular charge transfer emission to fluorescence resonance energy transfer.
    Paul BK; Samanta A; Guchhait N
    J Phys Chem A; 2010 May; 114(20):6097-102. PubMed ID: 20443538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Polydiacetylene Liposome Chemosensor with Enhanced Fluorescent Self-Amplification and Its Application for Selective Detection of Cationic Surfactants.
    Wang DE; Zhao L; Yuan MS; Chen SW; Li T; Wang J
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28231-28240. PubMed ID: 27681855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET).
    Algar WR; Krull UJ
    Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors.
    Yoon B; Lee S; Kim JM
    Chem Soc Rev; 2009 Jul; 38(7):1958-68. PubMed ID: 19551176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating ligand-receptor interactions at bilayer surface using electronic absorption spectroscopy and fluorescence resonance energy transfer.
    Dogra N; Li X; Kohli P
    Langmuir; 2012 Sep; 28(36):12989-98. PubMed ID: 22734511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling.
    Jang S
    J Chem Phys; 2007 Nov; 127(17):174710. PubMed ID: 17994845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time monitoring of ligand-receptor interactions with fluorescence resonance energy transfer.
    Dogra N; Reyes JC; Garg N; Kohli P
    J Vis Exp; 2012 Aug; (66):e3805. PubMed ID: 22929922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled pi-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET).
    Praveen VK; George SJ; Varghese R; Vijayakumar C; Ajayaghosh A
    J Am Chem Soc; 2006 Jun; 128(23):7542-50. PubMed ID: 16756309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon excitation fluorescence resonance energy transfer with small organic molecule as energy donor for bioassay.
    Liu L; Wei G; Liu Z; He Z; Xiao S; Wang Q
    Bioconjug Chem; 2008 Feb; 19(2):574-9. PubMed ID: 18197607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors.
    Ahn DJ; Kim JM
    Acc Chem Res; 2008 Jul; 41(7):805-16. PubMed ID: 18348539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient intramolecular energy transfer in single endcapped conjugated polymer molecules in the absence of appreciable spectral overlap.
    Becker K; Lupton JM; Feldmann J; Setayesh S; Grimsdale AC; Müllen K
    J Am Chem Soc; 2006 Jan; 128(3):680-1. PubMed ID: 16417332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new strategy to construct a FRET platform for ratiometric sensing of hydrogen sulfide.
    He L; Lin W; Xu Q; Wei H
    Chem Commun (Camb); 2015 Jan; 51(8):1510-3. PubMed ID: 25502568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of conformationally changed MBP using intramolecular FRET.
    Park K; Lee LH; Shin YB; Yi SY; Kang YW; Sok DE; Chung JW; Chung BH; Kim M
    Biochem Biophys Res Commun; 2009 Oct; 388(3):560-4. PubMed ID: 19682975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of crystalline- and graft polymer-based chemosensors.
    Broadwater SJ; Hickey MK; McQuade DT
    J Am Chem Soc; 2003 Sep; 125(37):11154-5. PubMed ID: 16220910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.