These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17014107)

  • 41. Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures.
    Ye J; Van Dorpe P; Van Roy W; Borghs G; Maes G
    Langmuir; 2009 Feb; 25(3):1822-7. PubMed ID: 19125593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering.
    Félidj N; Truong SL; Aubard J; Lévi G; Krenn JR; Hohenau A; Leitner A; Aussenegg FR
    J Chem Phys; 2004 Apr; 120(15):7141-6. PubMed ID: 15267619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering.
    Yun S; Park YK; Kim SK; Park S
    Anal Chem; 2007 Nov; 79(22):8584-9. PubMed ID: 17939645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Zhou J; Xiao H; Chen SJ; Tsai HL
    Opt Lett; 2010 Apr; 35(7):941-3. PubMed ID: 20364177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stabilization of gold nanoparticle films on glass by thermal embedding.
    Karakouz T; Maoz BM; Lando G; Vaskevich A; Rubinstein I
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):978-87. PubMed ID: 21388167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymatic activity of lipase-nanoparticle conjugates and the digestion of lipid liquid crystalline assemblies.
    Brennan JL; Kanaras AG; Nativo P; Tshikhudo TR; Rees C; Fernandez LC; Dirvianskyte N; Razumas V; Skjøt M; Svendsen A; Jørgensen CI; Schweins R; Zackrisson M; Nylander T; Brust M; Barauskas J
    Langmuir; 2010 Aug; 26(16):13590-9. PubMed ID: 20695608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates.
    Merlen A; Gadenne V; Romann J; Chevallier V; Patrone L; Valmalette JC
    Nanotechnology; 2009 May; 20(21):215705. PubMed ID: 19423944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates.
    Biswas A; Bayer IS; Dahanayaka DH; Bumm LA; Li Z; Watanabe F; Sharma R; Xu Y; Biris AS; Norton MG; Suhir E
    Nanotechnology; 2009 Aug; 20(32):325705. PubMed ID: 19620750
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution.
    Zou X; Dong S
    J Phys Chem B; 2006 Nov; 110(43):21545-50. PubMed ID: 17064105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures.
    Hu X; Wang T; Wang L; Guo S; Dong S
    Langmuir; 2007 May; 23(11):6352-7. PubMed ID: 17408292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemically bound gold nanoparticle arrays on silicon: assembly, properties and SERS study of protein interactions.
    Kaminska A; Inya-Agha O; Forster RJ; Keyes TE
    Phys Chem Chem Phys; 2008 Jul; 10(28):4172-80. PubMed ID: 18612522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth of Ag, Au, Cu, and Pt nanostructures on surfaces by micropatterned laser-image formations.
    Pacheco-Londono LC; Aparicio-Bolaño J; Primera-Pedrozo OM; Hernandez-Rivera SP
    Appl Opt; 2011 Jul; 50(21):4161-9. PubMed ID: 21772403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designed fabrication of ordered porous au/ag nanostructured films for surface-enhanced Raman scattering substrates.
    Lu L; Eychmüller A; Kobayashi A; Hirano Y; Yoshida K; Kikkawa Y; Tawa K; Ozaki Y
    Langmuir; 2006 Mar; 22(6):2605-9. PubMed ID: 16519460
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy.
    Wang T; Hu X; Dong S
    J Phys Chem B; 2006 Aug; 110(34):16930-6. PubMed ID: 16927983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The surface enhanced Raman spectroscopic study of the adsorption of C70 on the gold nanoparticles.
    Wang P; Fang Y
    J Chem Phys; 2008 Oct; 129(13):134702. PubMed ID: 19045111
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single molecule analysis by surfaced-enhanced Raman scattering.
    Pieczonka NP; Aroca RF
    Chem Soc Rev; 2008 May; 37(5):946-54. PubMed ID: 18443680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reproducible SERRS from structured gold surfaces.
    Mahajan S; Baumberg JJ; Russell AE; Bartlett PN
    Phys Chem Chem Phys; 2007 Dec; 9(45):6016-20. PubMed ID: 18004415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Templated assembly of gold nanoparticles into microscale tubules and their application in surface-enhanced Raman scattering.
    Wang T; Zheng R; Hu X; Zhang L; Dong S
    J Phys Chem B; 2006 Jul; 110(29):14179-85. PubMed ID: 16854117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.