These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 17014165)

  • 21. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation.
    Mélykúti B; Burrage K; Zygalakis KC
    J Chem Phys; 2010 Apr; 132(16):164109. PubMed ID: 20441260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic reduction method for biological chemical kinetics using time-scale separation.
    Pahlajani CD; Atzberger PJ; Khammash M
    J Theor Biol; 2011 Mar; 272(1):96-112. PubMed ID: 21126524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A moment closure method for stochastic reaction networks.
    Lee CH; Kim KH; Kim P
    J Chem Phys; 2009 Apr; 130(13):134107. PubMed ID: 19355717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic dynamics of complexation reaction in the limit of small numbers.
    Ghosh K
    J Chem Phys; 2011 May; 134(19):195101. PubMed ID: 21599088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An adaptive stepsize method for the chemical Langevin equation.
    Ilie S; Teslya A
    J Chem Phys; 2012 May; 136(18):184101. PubMed ID: 22583271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics.
    Picchini U; Ditlevsen S; De Gaetano A
    Math Med Biol; 2008 Jun; 25(2):141-55. PubMed ID: 18504247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space.
    van Zon JS; ten Wolde PR
    J Chem Phys; 2005 Dec; 123(23):234910. PubMed ID: 16392952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-scaled approach for simulating chemical reaction systems.
    Burrage K; Tian T; Burrage P
    Prog Biophys Mol Biol; 2004; 85(2-3):217-34. PubMed ID: 15142745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
    Griffith M; Courtney T; Peccoud J; Sanders WH
    Bioinformatics; 2006 Nov; 22(22):2782-9. PubMed ID: 16954141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic simulation of catalytic surface reactions in the fast diffusion limit.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2006 Nov; 125(19):194715. PubMed ID: 17129158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The finite state projection algorithm for the solution of the chemical master equation.
    Munsky B; Khammash M
    J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computational tool for Monte Carlo simulations of biomolecular reaction networks modeled on physical principles.
    Li IT; Mills E; Truong K
    IEEE Trans Nanobioscience; 2010 Mar; 9(1):24-30. PubMed ID: 19887331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the origins of approximations for stochastic chemical kinetics.
    Haseltine EL; Rawlings JB
    J Chem Phys; 2005 Oct; 123(16):164115. PubMed ID: 16268689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimensional reduction of the master equation for stochastic chemical networks: The reduced-multiplane method.
    Barzel B; Biham O; Kupferman R; Lipshtat A; Zait A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021117. PubMed ID: 20866785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multinomial tau-leaping method for stochastic kinetic simulations.
    Pettigrew MF; Resat H
    J Chem Phys; 2007 Feb; 126(8):084101. PubMed ID: 17343434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems.
    Deco G; Martí D
    Biol Cybern; 2007 May; 96(5):487-96. PubMed ID: 17387505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variational superposed Gaussian approximation for time-dependent solutions of Langevin equations.
    Hasegawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042912. PubMed ID: 25974567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.