These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 17014226)
1. Tracking control and synchronization of four-dimensional hyperchaotic Rossler system. Wang XY; Wu XJ Chaos; 2006 Sep; 16(3):033121. PubMed ID: 17014226 [TBL] [Abstract][Full Text] [Related]
2. A new scheme to generalized (lag, anticipated, and complete) synchronization in chaotic and hyperchaotic systems. Yan Z Chaos; 2005 Mar; 15(1):13101. PubMed ID: 15836255 [TBL] [Abstract][Full Text] [Related]
3. Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. Yan Z Chaos; 2005 Jun; 15(2):23902. PubMed ID: 16035897 [TBL] [Abstract][Full Text] [Related]
4. Function projective synchronization in chaotic and hyperchaotic systems through open-plus-closed-loop coupling. Sudheer KS; Sabir M Chaos; 2010 Mar; 20(1):013115. PubMed ID: 20370270 [TBL] [Abstract][Full Text] [Related]
5. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Lu J; Cao J Chaos; 2005 Dec; 15(4):043901. PubMed ID: 16396593 [TBL] [Abstract][Full Text] [Related]
6. Identifying parameter by identical synchronization between different systems. Huang D; Guo R Chaos; 2004 Mar; 14(1):152-9. PubMed ID: 15003056 [TBL] [Abstract][Full Text] [Related]
7. Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach. Hung YC; Hwang CC; Liao TL; Yan JJ Chaos; 2006 Sep; 16(3):033125. PubMed ID: 17014230 [TBL] [Abstract][Full Text] [Related]
8. Observer-based adaptive fuzzy synchronization for hyperchaotic systems. Xingyuan W; Juan M Chaos; 2008 Sep; 18(3):033102. PubMed ID: 19045440 [TBL] [Abstract][Full Text] [Related]
9. Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. He W; Cao J Chaos; 2009 Mar; 19(1):013118. PubMed ID: 19334982 [TBL] [Abstract][Full Text] [Related]
10. Q-S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic-numeric computation approach. Yan Z Chaos; 2006 Mar; 16(1):013119. PubMed ID: 16599750 [TBL] [Abstract][Full Text] [Related]
11. Generalized synchronization via nonlinear control. Juan M; Xingyuan W Chaos; 2008 Jun; 18(2):023108. PubMed ID: 18601475 [TBL] [Abstract][Full Text] [Related]
12. The effect of noise on the complete synchronization of two bidirectionally coupled piecewise linear chaotic systems. Xiao Y; Xu W; Li X; Tang S Chaos; 2009 Mar; 19(1):013131. PubMed ID: 19334995 [TBL] [Abstract][Full Text] [Related]
13. Forced synchronization of a self-sustained chaotic oscillator. González Salas JS; Campos Cantón E; Ordaz Salazar FC; Campos Cantón I Chaos; 2008 Jun; 18(2):023136. PubMed ID: 18601502 [TBL] [Abstract][Full Text] [Related]
14. Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. Ge ZM; Yang CH Chaos; 2008 Dec; 18(4):043129. PubMed ID: 19123639 [TBL] [Abstract][Full Text] [Related]
15. Novel synchronization of discrete-time chaotic systems using neural network observer. Naghavi SV; Safavi AA Chaos; 2008 Sep; 18(3):033110. PubMed ID: 19045448 [TBL] [Abstract][Full Text] [Related]
16. An approach to chaotic synchronization. Hramov AE; Koronovskii AA Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970 [TBL] [Abstract][Full Text] [Related]
17. Synchronizing strict-feedback chaotic system via a scalar driving signal. Chen S; Wang D; Chen L; Zhang Q; Wang C Chaos; 2004 Sep; 14(3):539-44. PubMed ID: 15446963 [TBL] [Abstract][Full Text] [Related]
18. Synchronization in networks of chaotic systems with time-delay coupling. Oguchi T; Nijmeijer H; Yamamoto T Chaos; 2008 Sep; 18(3):037108. PubMed ID: 19045482 [TBL] [Abstract][Full Text] [Related]
19. Using synchronization of chaos to identify the dynamics of unknown systems. Sorrentino F; Ott E Chaos; 2009 Sep; 19(3):033108. PubMed ID: 19791988 [TBL] [Abstract][Full Text] [Related]
20. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. Feng CF; Xu XJ; Wang SJ; Wang YH Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]