BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 17014718)

  • 1. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications.
    Halling SM; Jensen AE
    BMC Microbiol; 2006 Oct; 6():84. PubMed ID: 17014718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of a 23S rRNA mutation in Mycoplasma hominis associated with a loss of the intrinsic resistance to erythromycin and azithromycin.
    Pereyre S; Renaudin H; Charron A; Bébéar C; Bébéar CM
    J Antimicrob Chemother; 2006 Apr; 57(4):753-6. PubMed ID: 16464889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrolide resistance mechanisms among Streptococcus pneumoniae isolated over 6 years of Canadian Respiratory Organism Susceptibility Study (CROSS) (1998 2004).
    Wierzbowski AK; Nichol K; Laing N; Hisanaga T; Nikulin A; Karlowsky JA; Hoban DJ; Zhanel GG
    J Antimicrob Chemother; 2007 Oct; 60(4):733-40. PubMed ID: 17673477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter.
    Corcoran D; Quinn T; Cotter L; Fanning S
    Int J Antimicrob Agents; 2006 Jan; 27(1):40-5. PubMed ID: 16318913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azithromycin treatment failure in Mycoplasma genitalium-positive patients with nongonococcal urethritis is associated with induced macrolide resistance.
    Jensen JS; Bradshaw CS; Tabrizi SN; Fairley CK; Hamasuna R
    Clin Infect Dis; 2008 Dec; 47(12):1546-53. PubMed ID: 18990060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans.
    Kurincic M; Botteldoorn N; Herman L; Smole Mozina S
    Int J Food Microbiol; 2007 Nov; 120(1-2):186-90. PubMed ID: 17889390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual resistance patterns in macrolide-resistant Streptococcus pyogenes harbouring erm(A).
    Malhotra-Kumar S; Mazzariol A; Van Heirstraeten L; Lammens C; de Rijk P; Cornaglia G; Goossens H
    J Antimicrob Chemother; 2009 Jan; 63(1):42-6. PubMed ID: 18952616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inability of L22 ribosomal protein alteration to increase macrolide MICs in the absence of efflux mechanism in Haemophilus influenzae HMC-S.
    Peric M; Bozdogan B; Galderisi C; Krissinger D; Rager T; Appelbaum PC
    J Antimicrob Chemother; 2004 Aug; 54(2):393-400. PubMed ID: 15243030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of in vitro-selected mutants of Ureaplasma parvum resistant to macrolides and related antibiotics.
    Pereyre S; Métifiot M; Cazanave C; Renaudin H; Charron A; Bébéar C; Bébéar CM
    Int J Antimicrob Agents; 2007 Feb; 29(2):207-11. PubMed ID: 17196370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Renibacterium salmoninarum with reduced susceptibility to macrolide antibiotics by a standardized antibiotic susceptibility test.
    Rhodes LD; Nguyen OT; Deinhard RK; White TM; Harrell LW; Roberts MC
    Dis Aquat Organ; 2008 Aug; 80(3):173-80. PubMed ID: 18814542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis.
    Boumghar-Bourtchai L; Chardon H; Malbruny B; Mezghani S; Leclercq R; Dhalluin A
    Int J Antimicrob Agents; 2009 Sep; 34(3):274-7. PubMed ID: 19414240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquired resistance to macrolides in M. hominis.
    Pereyre S; Gonzalez P; De Barbeyrac B; Darnige A; Renaudin H; Charron A; Raherison S; Bébéar C; Bébéar CM
    Antimicrob Agents Chemother; 2002 Oct; 46(10):3142-50. PubMed ID: 12234836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in Chlamydia trachomatis strains selected in vitro by macrolide passage.
    Zhu H; Wang HP; Jiang Y; Hou SP; Liu YJ; Liu QZ
    Andrologia; 2010 Aug; 42(4):274-80. PubMed ID: 20629652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates.
    Pringle M; Poehlsgaard J; Vester B; Long KS
    Mol Microbiol; 2004 Dec; 54(5):1295-306. PubMed ID: 15554969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidrug resistance in European Clostridium difficile clinical isolates.
    Spigaglia P; Barbanti F; Mastrantonio P;
    J Antimicrob Chemother; 2011 Oct; 66(10):2227-34. PubMed ID: 21771851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae.
    Kosowska K; Credito K; Pankuch GA; Hoellman D; Lin G; Clark C; Dewasse B; McGhee P; Jacobs MR; Appelbaum PC
    Antimicrob Agents Chemother; 2004 Nov; 48(11):4113-9. PubMed ID: 15504829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of macrolide resistance in Mycoplasma gallisepticum in vitro and its resistance-related mutations within domain V of 23S rRNA.
    Wu CM; Wu H; Ning Y; Wang J; Du X; Shen J
    FEMS Microbiol Lett; 2005 Jun; 247(2):199-205. PubMed ID: 15936901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin.
    Matic V; Kosowska K; Bozdogan B; Kelly LM; Smith K; Ednie LM; Lin G; Credito KL; Clark CL; McGhee P; Pankuch GA; Jacobs MR; Appelbaum PC
    Antimicrob Agents Chemother; 2004 Nov; 48(11):4103-12. PubMed ID: 15504828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic bases of the rifampin resistance phenotype in Brucella spp.
    Marianelli C; Ciuchini F; Tarantino M; Pasquali P; Adone R
    J Clin Microbiol; 2004 Dec; 42(12):5439-43. PubMed ID: 15583262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of the genetic diversity of Brucella by multilocus sequencing.
    Whatmore AM; Perrett LL; MacMillan AP
    BMC Microbiol; 2007 Apr; 7():34. PubMed ID: 17448232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.