These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 17014802)

  • 41. Supercoil-accelerated DNA threading intercalation.
    Nordell P; Jansson ET; Lincoln P
    Biochemistry; 2009 Feb; 48(7):1442-4. PubMed ID: 19161310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled DNA in vitro.
    Li MX; Yeung HW; Pan LP; Chan SI
    Nucleic Acids Res; 1991 Nov; 19(22):6309-12. PubMed ID: 1659689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions of Drosophila DNA topoisomerase II with left-handed Z-DNA in supercoiled minicircles.
    Glikin GC; Jovin TM; Arndt-Jovin DJ
    Nucleic Acids Res; 1991 Dec; 19(25):7139-44. PubMed ID: 1662808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing hyper-negatively supercoiled mini-circles with nucleases and DNA binding proteins.
    Saintomé C; Delagoutte E
    PLoS One; 2018; 13(8):e0202138. PubMed ID: 30114256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circular intermediates with missing nucleotides in the conversion of supercoiled or nicked circular to linear duplex DNA catalyzed by two species of BAL 31 nuclease.
    Przykorska AK; Hauser CR; Gray HB
    Biochim Biophys Acta; 1988 Jan; 949(1):16-26. PubMed ID: 3275464
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermodynamic, spectroscopic, and equilibrium binding studies of DNA sequence context effects in four 40 base pair deoxyoligonucleotides.
    Vallone PM; Benight AS
    Biochemistry; 2000 Jul; 39(26):7835-46. PubMed ID: 10869190
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand.
    Paner TM; Gallo FJ; Doktycz MJ; Benight AS
    Biopolymers; 1993 Dec; 33(12):1779-89. PubMed ID: 8268406
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of DNA binding protein Ssh12 from hyperthermophilic archaeonSulfolobus shibatae on DNA supercoiling.
    Lou H; Huang L; Mai VQ
    Sci China C Life Sci; 1999 Aug; 42(4):401-8. PubMed ID: 18763131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Study of DNA melting in the region of the inversion of relative stability of AT and GC pairs].
    Voskoboĭnik AD; Monaselidze DR; Mgeladze GN; Chanchalashvili ZI; Lazurkin IuS; Frank-kamenetskiĭ IM
    Mol Biol (Mosk); 1975; 9(5):783-90. PubMed ID: 1214815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influencing the B-Z switch in supercoiled DNA.
    Lahiri A
    Biophys Chem; 1991 Jan; 39(1):85-90. PubMed ID: 2012837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA.
    Herr W
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):8009-13. PubMed ID: 3865212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes.
    Sheflin LG; Fucile NW; Spaulding SW
    Biochemistry; 1993 Apr; 32(13):3238-48. PubMed ID: 8461290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron microscopic identification of supercoiled regions in complex DNA structures.
    Inman RB; Schnös M
    J Mol Biol; 1987 Jan; 193(2):377-84. PubMed ID: 2955121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Torsional stress and local denaturation in supercoiled DNA.
    Benham CJ
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3870-4. PubMed ID: 226985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The recognition of mismatched base pairs in DNA by DNase I from Ustilago maydis.
    Pukkila PJ
    Mol Gen Genet; 1978 May; 161(3):245-50. PubMed ID: 353513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ligand binding isotherm for DNA in the presence of supercoil-induced non-B form: a theoretical analysis.
    Lahiri A; Majumdar R
    Biophys Chem; 1996 Feb; 58(3):239-43. PubMed ID: 17023357
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Supercoiled DNA promotes formation of intercalated cis-N2-deoxyguanine adducts and base-stacked trans-N2-deoxyguanine adducts by (+)-7R,8S-dihydrodiol-9S,10R-epoxy-7,8,9,10-tetra- hydrobenzo[a]pyrene.
    Jiang G; Jankowiak R; Grubor N; Banasiewicz M; Small GJ; Skorvaga M; Van Houten B; States JC
    Chem Res Toxicol; 2004 Mar; 17(3):330-9. PubMed ID: 15025503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hepatitis B virus DNA forms in nuclear and cytoplasmic fractions of infected human liver.
    Miller RH; Robinson WS
    Virology; 1984 Sep; 137(2):390-9. PubMed ID: 6485254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA polymerase: chromosome domain boundary maker and regulator of supercoil density.
    Higgins NP
    Curr Opin Microbiol; 2014 Dec; 22():138-43. PubMed ID: 25460807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and dynamic differences between supercoiled and linear DNA from proton NMR.
    Bendel P; James TL
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3284-6. PubMed ID: 6574485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.