BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17014882)

  • 1. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE; Kraft PC; Dratz EA
    Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of the farnesyl moiety in visual signalling.
    McCarthy NE; Akhtar M
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin.
    Downs MA; Arimoto R; Marshall GR; Kisselev OG
    Vision Res; 2006 Dec; 46(27):4442-8. PubMed ID: 16989885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B; Natochin M; Artemyev NO
    Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K; Morizumi T; Yamashita T; Shichida Y
    Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G protein subtype specificity of rhodopsin intermediates metarhodopsin Ib and metarhodopsin II.
    Morizumi T; Kimata N; Terakita A; Imamoto Y; Yamashita T; Shichida Y
    Photochem Photobiol; 2009; 85(1):57-62. PubMed ID: 18643908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation.
    Kim TY; Uji-i H; Möller M; Muls B; Hofkens J; Alexiev U
    Biochemistry; 2009 May; 48(18):3801-3. PubMed ID: 19301833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP
    Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin.
    Lehmann N; Alexiev U; Fahmy K
    J Mol Biol; 2007 Mar; 366(4):1129-41. PubMed ID: 17196983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation.
    Mitchell DC; Litman BJ
    Biochemistry; 1999 Jun; 38(24):7617-23. PubMed ID: 10387000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and spectroscopic characterization of photo-affinity peptide ligands to study rhodopsin-G protein interaction.
    Chen Y; Herrmann R; Fishkin N; Henklein P; Nakanishi K; Ernst OP
    Photochem Photobiol; 2008; 84(4):831-8. PubMed ID: 18282180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FTIR spectroscopy of complexes formed between metarhodopsin II and C-terminal peptides from the G-protein alpha- and gamma-subunits.
    Bartl F; Ritter E; Hofmann KP
    FEBS Lett; 2000 May; 473(2):259-64. PubMed ID: 10812086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suramin affects coupling of rhodopsin to transducin.
    Lehmann N; Krishna Aradhyam G; Fahmy K
    Biophys J; 2002 Feb; 82(2):793-802. PubMed ID: 11806921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.