These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 17015644)
1. Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. Bieler S; Silva F; Soto C; Belin D J Bacteriol; 2006 Oct; 188(20):7049-61. PubMed ID: 17015644 [TBL] [Abstract][Full Text] [Related]
2. The polypeptide core of Microcin E492 stably associates with the mannose permease and interferes with mannose metabolism. Biéler S; Silva F; Belin D Res Microbiol; 2010 Oct; 161(8):706-10. PubMed ID: 20674740 [TBL] [Abstract][Full Text] [Related]
3. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Destoumieux-Garzón D; Thomas X; Santamaria M; Goulard C; Barthélémy M; Boscher B; Bessin Y; Molle G; Pons AM; Letellier L; Peduzzi J; Rebuffat S Mol Microbiol; 2003 Aug; 49(4):1031-41. PubMed ID: 12890026 [TBL] [Abstract][Full Text] [Related]
4. Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Destoumieux-Garzón D; Peduzzi J; Thomas X; Djediat C; Rebuffat S Biometals; 2006 Apr; 19(2):181-91. PubMed ID: 16718603 [TBL] [Abstract][Full Text] [Related]
5. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics. Nolan EM; Walsh CT Biochemistry; 2008 Sep; 47(35):9289-99. PubMed ID: 18690711 [TBL] [Abstract][Full Text] [Related]
6. The Ferric uptake regulator (Fur) and iron availability control the production and maturation of the antibacterial peptide microcin E492. Marcoleta AE; Gutiérrez-Cortez S; Hurtado F; Argandoña Y; Corsini G; Monasterio O; Lagos R PLoS One; 2018; 13(8):e0200835. PubMed ID: 30071030 [TBL] [Abstract][Full Text] [Related]
7. Cloning and expression in Escherichia coli of genetic determinants for production of and immunity to microcin E492 from Klebsiella pneumoniae. Wilkens M; Villanueva JE; Cofré J; Chnaiderman J; Lagos R J Bacteriol; 1997 Aug; 179(15):4789-94. PubMed ID: 9244266 [TBL] [Abstract][Full Text] [Related]
8. The Ile13 residue of microcin J25 is essential for recognition by the receptor FhuA, but not by the inner membrane transporter SbmA. Socias SB; Severinov K; Salomon RA FEMS Microbiol Lett; 2009 Nov; 301(1):124-9. PubMed ID: 19843311 [TBL] [Abstract][Full Text] [Related]
9. Identification and properties of the genes encoding microcin E492 and its immunity protein. Lagos R; Villanueva JE; Monasterio O J Bacteriol; 1999 Jan; 181(1):212-7. PubMed ID: 9864332 [TBL] [Abstract][Full Text] [Related]
10. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Aguilera P; Marcoleta A; Lobos-Ruiz P; Arranz R; Valpuesta JM; Monasterio O; Lagos R Front Microbiol; 2016; 7():35. PubMed ID: 26858708 [TBL] [Abstract][Full Text] [Related]
11. Microcins in action: amazing defence strategies of Enterobacteria. Rebuffat S Biochem Soc Trans; 2012 Dec; 40(6):1456-62. PubMed ID: 23176498 [TBL] [Abstract][Full Text] [Related]
12. Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Lagos R; Baeza M; Corsini G; Hetz C; Strahsburger E; Castillo JA; Vergara C; Monasterio O Mol Microbiol; 2001 Oct; 42(1):229-43. PubMed ID: 11679081 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of regulation of the lactose permease by the phosphotransferase system in Escherichia coli: evidence for protein-protein interaction. Osumi T; Saier MH Ann Microbiol (Paris); 1982; 133(2):269-73. PubMed ID: 7044217 [TBL] [Abstract][Full Text] [Related]
14. Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). Esquinas-Rychen M; Erni B J Mol Microbiol Biotechnol; 2001 Jul; 3(3):361-70. PubMed ID: 11361066 [TBL] [Abstract][Full Text] [Related]
15. Import of periplasmic bacteriocins targeting the murein. Braun V; Helbig S; Patzer SI Biochem Soc Trans; 2012 Dec; 40(6):1449-55. PubMed ID: 23176497 [TBL] [Abstract][Full Text] [Related]
16. Efficient transcriptional antitermination from the Escherichia coli cytoplasmic membrane. Görke B; Rak B J Mol Biol; 2001 Apr; 308(2):131-45. PubMed ID: 11327758 [TBL] [Abstract][Full Text] [Related]
17. The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17. Mathavan I; Beis K Biochem Soc Trans; 2012 Dec; 40(6):1539-43. PubMed ID: 23176513 [TBL] [Abstract][Full Text] [Related]
18. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. Thomas X; Destoumieux-Garzón D; Peduzzi J; Afonso C; Blond A; Birlirakis N; Goulard C; Dubost L; Thai R; Tabet JC; Rebuffat S J Biol Chem; 2004 Jul; 279(27):28233-42. PubMed ID: 15102848 [TBL] [Abstract][Full Text] [Related]
19. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Lagos R; Tello M; Mercado G; García V; Monasterio O Curr Pharm Biotechnol; 2009 Jan; 10(1):74-85. PubMed ID: 19149591 [TBL] [Abstract][Full Text] [Related]
20. A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mlc. Tanaka Y; Kimata K; Aiba H EMBO J; 2000 Oct; 19(20):5344-52. PubMed ID: 11032802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]