BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 17015838)

  • 1. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs.
    Joerger AC; Ang HC; Fersht AR
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15056-61. PubMed ID: 17015838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue.
    Wallentine BD; Wang Y; Tretyachenko-Ladokhina V; Tan M; Senear DF; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2146-56. PubMed ID: 24100332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function-rescue: the diverse nature of common p53 cancer mutants.
    Joerger AC; Fersht AR
    Oncogene; 2007 Apr; 26(15):2226-42. PubMed ID: 17401432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations.
    Joerger AC; Allen MD; Fersht AR
    J Biol Chem; 2004 Jan; 279(2):1291-6. PubMed ID: 14534297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations.
    Joerger AC; Ang HC; Veprintsev DB; Blair CM; Fersht AR
    J Biol Chem; 2005 Apr; 280(16):16030-7. PubMed ID: 15703170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions.
    Eldar A; Rozenberg H; Diskin-Posner Y; Rohs R; Shakked Z
    Nucleic Acids Res; 2013 Oct; 41(18):8748-59. PubMed ID: 23863845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition.
    Olotu FA; Soliman MES
    J Cell Biochem; 2018 Mar; 119(3):2646-2652. PubMed ID: 29058783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant.
    Basse N; Kaar JL; Settanni G; Joerger AC; Rutherford TJ; Fersht AR
    Chem Biol; 2010 Jan; 17(1):46-56. PubMed ID: 20142040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core.
    Khoo KH; Joerger AC; Freund SM; Fersht AR
    Protein Eng Des Sel; 2009 Jul; 22(7):421-30. PubMed ID: 19515728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biology of the tumor suppressor p53 and cancer-associated mutants.
    Joerger AC; Fersht AR
    Adv Cancer Res; 2007; 97():1-23. PubMed ID: 17419939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common conformational effects of p53 mutations.
    Chen JM; Rosal R; Smith S; Pincus MR; Brandt-Rauf PW
    J Protein Chem; 2001 Feb; 20(2):101-5. PubMed ID: 11563689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study.
    Kamaraj B; Bogaerts A
    PLoS One; 2015; 10(8):e0134638. PubMed ID: 26244575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1.
    Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R
    Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs.
    Bauer MR; Jones RN; Baud MG; Wilcken R; Boeckler FM; Fersht AR; Joerger AC; Spencer J
    ACS Chem Biol; 2016 Aug; 11(8):2265-74. PubMed ID: 27267810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-spot mutants of p53 core domain evince characteristic local structural changes.
    Wong KB; DeDecker BS; Freund SM; Proctor MR; Bycroft M; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8438-42. PubMed ID: 10411893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy.
    Olotu FA; Soliman MES
    J Cell Biochem; 2019 Jan; 120(1):951-966. PubMed ID: 30160791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.
    Bromley D; Bauer MR; Fersht AR; Daggett V
    Protein Eng Des Sel; 2016 Sep; 29(9):377-90. PubMed ID: 27503952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 angstroms resolution.
    Tu C; Tan YH; Shaw G; Zhou Z; Bai Y; Luo R; Ji X
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):471-7. PubMed ID: 18453682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug.
    Boeckler FM; Joerger AC; Jaggi G; Rutherford TJ; Veprintsev DB; Fersht AR
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10360-5. PubMed ID: 18650397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.