BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 17015838)

  • 21. Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library.
    Shiraishi K; Kato S; Han SY; Liu W; Otsuka K; Sakayori M; Ishida T; Takeda M; Kanamaru R; Ohuchi N; Ishioka C
    J Biol Chem; 2004 Jan; 279(1):348-55. PubMed ID: 14559903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based rescue of common tumor-derived p53 mutants.
    Wieczorek AM; Waterman JL; Waterman MJ; Halazonetis TD
    Nat Med; 1996 Oct; 2(10):1143-6. PubMed ID: 8837616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm.
    Bauer MR; Krämer A; Settanni G; Jones RN; Ni X; Khan Tareque R; Fersht AR; Spencer J; Joerger AC
    ACS Chem Biol; 2020 Mar; 15(3):657-668. PubMed ID: 31990523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights.
    Merabet A; Houlleberghs H; Maclagan K; Akanho E; Bui TT; Pagano B; Drake AF; Fraternali F; Nikolova PV
    Biochem J; 2010 Mar; 427(2):225-36. PubMed ID: 20113312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A common gain of function of p53 cancer mutants in inducing genetic instability.
    Liu DP; Song H; Xu Y
    Oncogene; 2010 Feb; 29(7):949-56. PubMed ID: 19881536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain.
    Calhoun S; Daggett V
    Biochemistry; 2011 Jun; 50(23):5345-53. PubMed ID: 21561095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive evolution of p53 thermodynamic stability.
    Khoo KH; Andreeva A; Fersht AR
    J Mol Biol; 2009 Oct; 393(1):161-75. PubMed ID: 19683006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanisms of functional rescue mediated by P53 tumor suppressor mutations.
    Tan YH; Chen YM; Ye X; Lu Q; Tretyachenko-Ladokhina V; Yang W; Senear DF; Luo R
    Biophys Chem; 2009 Nov; 145(1):37-44. PubMed ID: 19748724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules.
    Friedler A; Veprintsev DB; Hansson LO; Fersht AR
    J Biol Chem; 2003 Jun; 278(26):24108-12. PubMed ID: 12700230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast.
    Grochova D; Vankova J; Damborsky J; Ravcukova B; Smarda J; Vojtesek B; Smardova J
    Oncogene; 2008 Feb; 27(9):1243-52. PubMed ID: 17724467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding.
    Gomes AS; Trovão F; Andrade Pinheiro B; Freire F; Gomes S; Oliveira C; Domingues L; Romão MJ; Saraiva L; Carvalho AL
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29652801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating Drosophila p53 as a model system for studying cancer mutations.
    Herzog G; Joerger AC; Shmueli MD; Fersht AR; Gazit E; Segal D
    J Biol Chem; 2012 Dec; 287(53):44330-7. PubMed ID: 23135266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific DNA binding by different classes of human p53 mutants.
    Rolley N; Butcher S; Milner J
    Oncogene; 1995 Aug; 11(4):763-70. PubMed ID: 7651740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy.
    Rasquinha JA; Bej A; Dutta S; Mukherjee S
    Biochemistry; 2017 Sep; 56(37):4962-4971. PubMed ID: 28836764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wild type p53 function in p53
    Sundar D; Yu Y; Katiyar SP; Putri JF; Dhanjal JK; Wang J; Sari AN; Kolettas E; Kaul SC; Wadhwa R
    J Exp Clin Cancer Res; 2019 Feb; 38(1):103. PubMed ID: 30808373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators.
    Balourdas DI; Markl AM; Krämer A; Settanni G; Joerger AC
    Cell Death Dis; 2024 Jun; 15(6):408. PubMed ID: 38862470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Lys-Specific Molecular Tweezer, CLR01, Modulates Aggregation of the Mutant p53 DNA Binding Domain and Inhibits Its Toxicity.
    Herzog G; Shmueli MD; Levy L; Engel L; Gazit E; Klärner FG; Schrader T; Bitan G; Segal D
    Biochemistry; 2015 Jun; 54(24):3729-38. PubMed ID: 26030124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oncogenic mutations and packing defects in protein structure.
    Fernández A
    J Biomol Struct Dyn; 2003 Aug; 21(1):9-14. PubMed ID: 12854955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant.
    Barakat K; Issack BB; Stepanova M; Tuszynski J
    PLoS One; 2011; 6(11):e27651. PubMed ID: 22110706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.