These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
677 related articles for article (PubMed ID: 17016212)
1. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Baek CH; Ko YJ Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212 [TBL] [Abstract][Full Text] [Related]
2. Tissue-engineered cartilage on biodegradable macroporous scaffolds: cell shape and phenotypic expression. Baek CH; Lee JC; Jung YG; Ko YJ; Yoon JJ; Park TG Laryngoscope; 2002 Jun; 112(6):1050-5. PubMed ID: 12160272 [TBL] [Abstract][Full Text] [Related]
3. Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Wu W; Feng X; Mao T; Feng X; Ouyang HW; Zhao G; Chen F Br J Oral Maxillofac Surg; 2007 Jun; 45(4):272-8. PubMed ID: 17097777 [TBL] [Abstract][Full Text] [Related]
4. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice]. Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021 [TBL] [Abstract][Full Text] [Related]
5. Open macroporous poly(lactic-co-glycolic Acid) microspheres as an injectable scaffold for cartilage tissue engineering. Kang SW; La WG; Kim BS J Biomater Sci Polym Ed; 2009; 20(3):399-409. PubMed ID: 19192363 [TBL] [Abstract][Full Text] [Related]
6. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
7. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862 [TBL] [Abstract][Full Text] [Related]
8. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Dai W; Kawazoe N; Lin X; Dong J; Chen G Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751 [TBL] [Abstract][Full Text] [Related]
9. Novel approach to engineer implantable nasal alar cartilage employing marrow precursor cell sheet and biodegradable scaffold. Zhang J; Liu L; Gao Z; Li L; Feng X; Wu W; Ma Q; Cheng X; Chen F; Mao T J Oral Maxillofac Surg; 2009 Feb; 67(2):257-64. PubMed ID: 19138597 [TBL] [Abstract][Full Text] [Related]
10. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651 [TBL] [Abstract][Full Text] [Related]
11. Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering. Jeon YH; Choi JH; Sung JK; Kim TK; Cho BC; Chung HY J Craniofac Surg; 2007 Nov; 18(6):1249-58. PubMed ID: 17993865 [TBL] [Abstract][Full Text] [Related]
12. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Park GE; Pattison MA; Park K; Webster TJ Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802 [TBL] [Abstract][Full Text] [Related]
13. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
14. Three step derivation of cartilage like tissue from human embryonic stem cells by 2D-3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds. Bai HY; Chen GA; Mao GH; Song TR; Wang YX J Biomed Mater Res A; 2010 Aug; 94(2):539-46. PubMed ID: 20186773 [TBL] [Abstract][Full Text] [Related]
15. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Chen G; Liu D; Tadokoro M; Hirochika R; Ohgushi H; Tanaka J; Tateishi T Biochem Biophys Res Commun; 2004 Sep; 322(1):50-5. PubMed ID: 15313172 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Yen HJ; Tseng CS; Hsu SH; Tsai CL Biomed Microdevices; 2009 Jun; 11(3):615-24. PubMed ID: 19104940 [TBL] [Abstract][Full Text] [Related]
17. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. Chen G; Sato T; Ushida T; Hirochika R; Shirasaki Y; Ochiai N; Tateishi T J Biomed Mater Res A; 2003 Dec; 67(4):1170-80. PubMed ID: 14624503 [TBL] [Abstract][Full Text] [Related]
18. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
19. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Lu H; Ko YG; Kawazoe N; Chen G Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151 [TBL] [Abstract][Full Text] [Related]
20. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]