BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17016747)

  • 1. Defining the nucleotide binding sites of P2Y receptors using rhodopsin-based homology modeling.
    Ivanov AA; Costanzi S; Jacobson KA
    J Comput Aided Mol Des; 2006; 20(7-8):417-26. PubMed ID: 17016747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling.
    Costanzi S; Mamedova L; Gao ZG; Jacobson KA
    J Med Chem; 2004 Oct; 47(22):5393-404. PubMed ID: 15481977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the P2Y purinoceptor using rhodopsin as template.
    Van Rhee AM; Fischer B; Van Galen PJ; Jacobson KA
    Drug Des Discov; 1995 Nov; 13(2):133-54. PubMed ID: 8872457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPR17: molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors.
    Parravicini C; Ranghino G; Abbracchio MP; Fantucci P
    BMC Bioinformatics; 2008 Jun; 9():263. PubMed ID: 18533035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety.
    Ivanov AA; Fricks I; Kendall Harden T; Jacobson KA
    Bioorg Med Chem Lett; 2007 Feb; 17(3):761-6. PubMed ID: 17088057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor.
    Deflorian F; Jacobson KA
    J Comput Aided Mol Des; 2011 Apr; 25(4):329-38. PubMed ID: 21461952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor.
    Moro S; Hoffmann C; Jacobson KA
    Biochemistry; 1999 Mar; 38(12):3498-507. PubMed ID: 10090736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition at purine and pyrimidine nucleotide (P2) receptors.
    Jacobson KA; Costanzi S; Ohno M; Joshi BV; Besada P; Xu B; Tchilibon S
    Curr Top Med Chem; 2004; 4(8):805-19. PubMed ID: 15078212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands.
    Trujillo K; Paoletta S; Kiselev E; Jacobson KA
    Bioorg Med Chem; 2015 Jul; 23(14):4056-64. PubMed ID: 25868749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder.
    Lazarowski ER; Rochelle LG; O'Neal WK; Ribeiro CM; Grubb BR; Zhang V; Harden TK; Boucher RC
    J Pharmacol Exp Ther; 2001 Apr; 297(1):43-9. PubMed ID: 11259526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift in purine/pyrimidine base recognition upon exchanging extracellular domains in P2Y 1/6 chimeric receptors.
    Hoffmann C; Soltysiak K; West PL; Jacobson KA
    Biochem Pharmacol; 2004 Nov; 68(10):2075-86. PubMed ID: 15476678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P2-pyrimidinergic receptors and their ligands.
    Müller CE
    Curr Pharm Des; 2002; 8(26):2353-69. PubMed ID: 12369950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites.
    Moro S; Guo D; Camaioni E; Boyer JL; Harden TK; Jacobson KA
    J Med Chem; 1998 Apr; 41(9):1456-66. PubMed ID: 9554879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoblast responses to nucleotides increase during differentiation.
    Orriss IR; Knight GE; Ranasinghe S; Burnstock G; Arnett TR
    Bone; 2006 Aug; 39(2):300-9. PubMed ID: 16616882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand binding and activation of UTP-activated G protein-coupled P2Y
    Attah IY; Neumann A; Al-Hroub H; Rafehi M; Baqi Y; Namasivayam V; Müller CE
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129501. PubMed ID: 31812541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.
    von Kügelgen I
    Pharmacol Ther; 2006 Jun; 110(3):415-32. PubMed ID: 16257449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis.
    Zylberg J; Ecke D; Fischer B; Reiser G
    Biochem J; 2007 Jul; 405(2):277-86. PubMed ID: 17338680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery.
    Chootip K; Gurney AM; Kennedy C
    Respir Res; 2005 Oct; 6(1):124. PubMed ID: 16250909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity.
    Erb L; Garrad R; Wang Y; Quinn T; Turner JT; Weisman GA
    J Biol Chem; 1995 Mar; 270(9):4185-8. PubMed ID: 7876172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular recognition in purinergic receptors. 1. A comprehensive computational study of the h-P2Y1-receptor.
    Major DT; Fischer B
    J Med Chem; 2004 Aug; 47(18):4391-404. PubMed ID: 15317452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.