BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 17017056)

  • 1. Isolation by resistance.
    McRae BH
    Evolution; 2006 Aug; 60(8):1551-61. PubMed ID: 17017056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges.
    Kearney M; Porter W
    Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial genetic structure of a small rodent in a heterogeneous landscape.
    Gauffre B; Estoup A; Bretagnolle V; Cosson JF
    Mol Ecol; 2008 Nov; 17(21):4619-29. PubMed ID: 19140985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do landscape processes predict phylogeographic patterns in the wood frog?
    Lee-Yaw JA; Davidson A; McRae BH; Green DM
    Mol Ecol; 2009 May; 18(9):1863-74. PubMed ID: 19302465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.).
    Hemmer-Hansen J; Nielsen EE; Grønkjaer P; Loeschcke V
    Mol Ecol; 2007 Aug; 16(15):3104-18. PubMed ID: 17651190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment.
    McCairns RJ; Bernatchez L
    Mol Ecol; 2008 Sep; 17(17):3901-16. PubMed ID: 18662229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape.
    Purrenhage JL; Niewiarowski PH; Moore FB
    Mol Ecol; 2009 Jan; 18(2):235-47. PubMed ID: 19192178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling.
    Cushman SA; McKelvey KS; Hayden J; Schwartz MK
    Am Nat; 2006 Oct; 168(4):486-99. PubMed ID: 17004220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird.
    Pavlacky DC; Goldizen AW; Prentis PJ; Nicholls JA; Lowe AJ
    Mol Ecol; 2009 Jul; 18(14):2945-60. PubMed ID: 19549110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape characteristics influence morphological and genetic differentiation in a widespread raptor (Buteo jamaicensis).
    Hull JM; Hull AC; Sacks BN; Smith JP; Ernest HB
    Mol Ecol; 2008 Feb; 17(3):810-24. PubMed ID: 18208488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating genetic diversity and habitat dynamics in Plantago brutia (Plantaginaceae), implications for the management of narrow endemics in Mediterranean mountain pastures.
    De Vita A; Bernardo L; Gargano D; Palermo AM; Peruzzi L; Musacchio A
    Plant Biol (Stuttg); 2009 Nov; 11(6):821-8. PubMed ID: 19796359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting land cover using GIS, Bayesian and evolutionary algorithm methods.
    Aitkenhead MJ; Aalders IH
    J Environ Manage; 2009 Jan; 90(1):236-50. PubMed ID: 18079039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of density regulation to habitat specialization, evolution of a species' range, and the dynamics of biological invasions.
    Filin I; Holt RD; Barfield M
    Am Nat; 2008 Aug; 172(2):233-47. PubMed ID: 18590457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coyotes demonstrate how habitat specialization by individuals of a generalist species can diversify populations in a heterogeneous ecoregion.
    Sacks BN; Bannasch DL; Chomel BB; Ernest HB
    Mol Biol Evol; 2008 Jul; 25(7):1384-94. PubMed ID: 18391065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitat type predicts genetic population differentiation in freshwater invertebrates.
    Marten A; Brändle M; Brandl R
    Mol Ecol; 2006 Aug; 15(9):2643-51. PubMed ID: 16842433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multilevel models to identify drivers of landscape-genetic structure among management areas.
    Dudaniec RY; Rhodes JR; Worthington Wilmer J; Lyons M; Lee KE; McAlpine CA; Carrick FN
    Mol Ecol; 2013 Jul; 22(14):3752-65. PubMed ID: 23730800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul).
    Wang IJ
    Mol Ecol; 2009 Sep; 18(18):3847-56. PubMed ID: 19708887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thresholds in songbird occurrence in relation to landscape structure.
    Betts MG; Forbes GJ; Diamond AW
    Conserv Biol; 2007 Aug; 21(4):1046-58. PubMed ID: 17650254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations.
    Worthington Wilmer J; Elkin C; Wilcox C; Murray L; Niejalke D; Possingham H
    Mol Ecol; 2008 Aug; 17(16):3733-51. PubMed ID: 18643884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population genetic structure in Myrtus communis L. in a chronically fragmented landscape in the Mediterranean: can gene flow counteract habitat perturbation?
    Albaladejo RG; Carrillo LF; Aparicio A; Fernández-Manjarrés JF; González-Varo JP
    Plant Biol (Stuttg); 2009 May; 11(3):442-53. PubMed ID: 19470115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.