These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 170179)

  • 1. Metabolism in normal and virus-transformed chick embryo fibroblasts as observed with glucose labeled with 14C and tritium and with tritium-labeled water.
    Rambeck WA; Bissell MJ; Bassham JA
    Hoppe Seylers Z Physiol Chem; 1975 Feb; 356(2):203-12. PubMed ID: 170179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of metabolism of normal and virus-transformed chick cells in culture.
    Bissell MJ; White RC; Hatie C; Bassham JA
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2951-5. PubMed ID: 4355375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport as a rate limiting step in glucose metabolism in virus-transformed cells: studies with cytochalasin B.
    Bissell MJ
    J Cell Physiol; 1976 Dec; 89(4):701-9. PubMed ID: 188839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis in chick embryo cell cultures transformed by Rous sarcoma virus.
    Steck TL; Kaufman S; Bader JP
    Cancer Res; 1968 Aug; 28(8):1611-9. PubMed ID: 4299826
    [No Abstract]   [Full Text] [Related]  

  • 5. Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: intracellular levels of glycolytic intermediates.
    Singh VN; Singh M; August JT; Horecker BL
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4129-32. PubMed ID: 4372608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts.
    Venuta S; Rubin H
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):653-7. PubMed ID: 4351798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glucose starvation on normal and rous sarcoma virus-transformed chick cells.
    Venuta S; Rubin H
    J Natl Cancer Inst; 1975 Feb; 54(2):395-400. PubMed ID: 163906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alloxan action on glucose metabolism in cultured fibroblasts. II. Effects on pentose-monophosphate shunt and tricarboxylic acid pathways.
    Ishibashi F; Bennett PH; Howard BV
    Am J Physiol; 1981 Jun; 240(6):E645-8. PubMed ID: 7246733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes.
    Downs SM; Utecht AM
    Biol Reprod; 1999 Jun; 60(6):1446-52. PubMed ID: 10330104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic disposition of glucose carbon by sensory ganglia of 15-day-old chicken embryos, with new dynamic models of carbohydrate metabolism.
    Larrabee MG
    J Neurochem; 1980 Jul; 35(1):210-31. PubMed ID: 7005398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexose transport in normal and in Rous sarcoma virus-transformed cells.
    Weber MJ
    J Biol Chem; 1973 May; 248(9):2978-83. PubMed ID: 4349478
    [No Abstract]   [Full Text] [Related]  

  • 12. Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus. Transformation-specific changes in the activities of key enzymes of the glycolytic and hexose monophosphate shunt pathways.
    Singh M; Singh VN; August JT; Horecker BL
    Arch Biochem Biophys; 1974 Nov; 165(1):240-6. PubMed ID: 4374129
    [No Abstract]   [Full Text] [Related]  

  • 13. Use of [2-14C]glucose and [5-14C]glucose for evaluating the mechanism and quantitative significance of the 'liver-cell' pentose cycle.
    Longenecker JP; Williams JF
    Biochem J; 1980 Jun; 188(3):847-57. PubMed ID: 7470038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurement of the L-type pentose phosphate cycle with [2-14C]glucose and [5-14C]glucose in isolated hepatocytes.
    Longenecker JP; Williams JF
    Biochem J; 1980 Jun; 188(3):859-65. PubMed ID: 7470039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative pathways of glucose utilization in brain: changes in the pattern of glucose utilization and of the response of the pentose phosphate pathway to 5-hydroxytryptamine during aging.
    Zubairu S; Hothersall JS; El-Hassan A; McLean P; Greenbaum AL
    J Neurochem; 1983 Jul; 41(1):76-83. PubMed ID: 6864230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early synthesis of virus-specific RNA and DNA in cells rapidly transformed with Rous sarcoma virus.
    Schincariol AL; Joklik WK
    Virology; 1973 Dec; 56(2):532-48. PubMed ID: 4357055
    [No Abstract]   [Full Text] [Related]  

  • 17. Cell shape and hexose transport in normal and virus-transformed cells in culture.
    Bissell MJ; Farson D; Tung AS
    J Supramol Struct; 1977; 6(1):1-12. PubMed ID: 197315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts.
    Shiu RP; Pouyssegur J; Pastan I
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3840-4. PubMed ID: 198809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of DNA, RNA protein and glycoprotein in mitochondria of cells transformed with Rous sarcoma viruses.
    Bosmann HB; Myers MW; Morgan HR
    Biochem Biophys Res Commun; 1974 Jan; 56(1):75-83. PubMed ID: 4362944
    [No Abstract]   [Full Text] [Related]  

  • 20. Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus. Comparison of transport properties of whole cells and membrane vesicles.
    Inui KI; Tillotson LG; Isselbacher KJ
    Biochim Biophys Acta; 1980 Jun; 598(3):616-27. PubMed ID: 6248112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.