These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In vitro efficacy of new antifolates against trimethoprim-resistant Bacillus anthracis. Barrow EW; Dreier J; Reinelt S; Bourne PC; Barrow WW Antimicrob Agents Chemother; 2007 Dec; 51(12):4447-52. PubMed ID: 17875993 [TBL] [Abstract][Full Text] [Related]
4. Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain. Chan DC; Fu H; Forsch RA; Queener SF; Rosowsky A J Med Chem; 2005 Jun; 48(13):4420-31. PubMed ID: 15974594 [TBL] [Abstract][Full Text] [Related]
5. New 2,4-diamino-5-(2',5'-substituted benzyl)pyrimidines as potential drugs against opportunistic infections of AIDS and other immune disorders. Synthesis and species-dependent antifolate activity. Rosowsky A; Forsch RA; Sibley CH; Inderlied CB; Queener SF J Med Chem; 2004 Mar; 47(6):1475-86. PubMed ID: 14998335 [TBL] [Abstract][Full Text] [Related]
6. 2,4-Diamino-5-methyl-6-substituted arylthio-furo[2,3-d]pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors. Gangjee A; Jain HD; Phan J; Guo X; Queener SF; Kisliuk RL Bioorg Med Chem; 2010 Jan; 18(2):953-61. PubMed ID: 20056546 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy)benzyl]pyrimidines: marked improvement in potency relative to trimethoprim and species selectivity relative to piritrexim. Rosowsky A; Forsch RA; Queener SF J Med Chem; 2002 Jan; 45(1):233-41. PubMed ID: 11754594 [TBL] [Abstract][Full Text] [Related]
8. Antimycobacterial activity of 1-deaza-7,8-dihydropteridine derivatives against Mycobacterium tuberculosis and Mycobacterium avium complex in vitro. Suling WJ; Maddry JA J Antimicrob Chemother; 2001 Apr; 47(4):451-4. PubMed ID: 11266419 [TBL] [Abstract][Full Text] [Related]
9. Preliminary in vitro studies on two potent, water-soluble trimethoprim analogues with exceptional species selectivity against dihydrofolate reductase from Pneumocystis carinii and Mycobacterium avium. Forsch RA; Queener SF; Rosowsky A Bioorg Med Chem Lett; 2004 Apr; 14(7):1811-5. PubMed ID: 15026078 [TBL] [Abstract][Full Text] [Related]
10. Susceptibilities of Mycobacterium tuberculosis and Mycobacterium avium complex to lipophilic deazapteridine derivatives, inhibitors of dihydrofolate reductase. Suling WJ; Reynolds RC; Barrow EW; Wilson LN; Piper JR; Barrow WW J Antimicrob Chemother; 1998 Dec; 42(6):811-5. PubMed ID: 10052907 [TBL] [Abstract][Full Text] [Related]
11. 2,4-diamino-5-deaza-6-substituted pyrido[2,3-d]pyrimidine antifolates as potent and selective nonclassical inhibitors of dihydrofolate reductases. Gangjee A; Vasudevan A; Queener SF; Kisliuk RL J Med Chem; 1996 Mar; 39(7):1438-46. PubMed ID: 8691474 [TBL] [Abstract][Full Text] [Related]
12. Further studies on 2,4-diamino-5-(2',5'-disubstituted benzyl)pyrimidines as potent and selective inhibitors of dihydrofolate reductases from three major opportunistic pathogens of AIDS. Rosowsky A; Forsch RA; Queener SF J Med Chem; 2003 Apr; 46(9):1726-36. PubMed ID: 12699390 [TBL] [Abstract][Full Text] [Related]
13. Identification of novel selective Mtb-DHFR inhibitors as antitubercular agents through structure-based computational techniques. Sharma K; Neshat N; Sharma S; Giri N; Srivastava A; Almalki F; Saifullah K; Alam MM; Shaquiquzzaman M; Akhter M Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900287. PubMed ID: 31867798 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of 2,4-diamino-6-[2'-O-(omega-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpteridines as potent and selective inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase. Rosowsky A; Fu H; Chan DC; Queener SF J Med Chem; 2004 May; 47(10):2475-85. PubMed ID: 15115391 [TBL] [Abstract][Full Text] [Related]
15. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors. Shelke RU; Degani MS; Raju A; Ray MK; Rajan MG Arch Pharm (Weinheim); 2016 Aug; 349(8):602-13. PubMed ID: 27320965 [TBL] [Abstract][Full Text] [Related]
16. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain. Rosowsky A; Cody V; Galitsky N; Fu H; Papoulis AT; Queener SF J Med Chem; 1999 Nov; 42(23):4853-60. PubMed ID: 10579848 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of new 2,4-Diaminopyrido[2,3-d]pyrimidine and 2,4-Diaminopyrrolo[2,3-d]pyrimidine inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase. Rosowsky A; Chen H; Fu H; Queener SF Bioorg Med Chem; 2003 Jan; 11(1):59-67. PubMed ID: 12467708 [TBL] [Abstract][Full Text] [Related]
18. Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. Debnath AK J Med Chem; 2002 Jan; 45(1):41-53. PubMed ID: 11754578 [TBL] [Abstract][Full Text] [Related]
19. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Desai NC; Trivedi AR; Khedkar VM Bioorg Med Chem Lett; 2016 Aug; 26(16):4030-5. PubMed ID: 27397497 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, and biological evaluation of 2,4-diamino-5-methyl-6-substituted-pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors. Gangjee A; Lin X; Queener SF J Med Chem; 2004 Jul; 47(14):3689-92. PubMed ID: 15214795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]