BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17018001)

  • 1. Cysteine proteinase inhibitors as therapy for parasitic diseases: advances in inhibitor design.
    Steverding D; Caffrey CR; Sajid M
    Mini Rev Med Chem; 2006 Sep; 6(9):1025-32. PubMed ID: 17018001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design.
    Lecaille F; Kaleta J; Brömme D
    Chem Rev; 2002 Dec; 102(12):4459-88. PubMed ID: 12475197
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action.
    McKerrow JH
    Int J Parasitol; 1999 Jun; 29(6):833-7. PubMed ID: 10480720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the synthesis, design and selection of cysteine protease inhibitors.
    Hernandez AA; Roush WR
    Curr Opin Chem Biol; 2002 Aug; 6(4):459-65. PubMed ID: 12133721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine proteinases of trypanosome parasites: novel targets for chemotherapy.
    Caffrey CR; Scory S; Steverding D
    Curr Drug Targets; 2000 Sep; 1(2):155-62. PubMed ID: 11465068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotin-labelled peptidyl diazomethane inhibitors derived from the substrate-like sequence of cystatin: targeting of the active site of cruzipain, the major cysteine proteinase of Trypanosoma cruzi.
    Lalmanach G; Mayer R; Serveau C; Scharfstein J; Gauthier F
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):395-9. PubMed ID: 8809025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents.
    Yang PY; Wang M; Li L; Wu H; He CY; Yao SQ
    Chemistry; 2012 May; 18(21):6528-41. PubMed ID: 22488888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a New Antileishmanial Aziridine-2,3-Dicarboxylate-Based Inhibitor with High Selectivity for Parasite Cysteine Proteases.
    Schad C; Baum U; Frank B; Dietzel U; Mattern F; Gomes C; Ponte-Sucre A; Moll H; Schurigt U; Schirmeister T
    Antimicrob Agents Chemother; 2016 Feb; 60(2):797-805. PubMed ID: 26596939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of alpha-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease.
    Choe Y; Brinen LS; Price MS; Engel JC; Lange M; Grisostomi C; Weston SG; Pallai PV; Cheng H; Hardy LW; Hartsough DS; McMakin M; Tilton RF; Baldino CM; Craik CS
    Bioorg Med Chem; 2005 Mar; 13(6):2141-56. PubMed ID: 15727867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Cysteine Proteases from Plasmodium falciparum: A General Overview, Rational Drug Design and Computational Approaches for Drug Discovery.
    Bekono BD; Ntie-Kang F; Owono Owono LC; Megnassan E
    Curr Drug Targets; 2018; 19(5):501-526. PubMed ID: 28003005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anti-parasitic effects of nitric oxide.
    Ascenzi P; Bocedi A; Gradoni L
    IUBMB Life; 2003; 55(10-11):573-8. PubMed ID: 14711001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly tunable thiosulfonates as a novel class of cysteine protease inhibitors with anti-parasitic activity against Schistosoma mansoni.
    Ward DJ; Van de Langemheen H; Koehne E; Kreidenweiss A; Liskamp RMJ
    Bioorg Med Chem; 2019 Jul; 27(13):2857-2870. PubMed ID: 31126821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors.
    Fennell BD; Warren JM; Chung KK; Main HL; Arend AB; Tochowicz A; Götz MG
    J Enzyme Inhib Med Chem; 2013 Jun; 28(3):468-78. PubMed ID: 22380780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents.
    Chakka SK; Kalamuddin M; Sundararaman S; Wei L; Mundra S; Mahesh R; Malhotra P; Mohmmed A; Kotra LP
    Bioorg Med Chem; 2015 May; 23(9):2221-40. PubMed ID: 25840796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and biological evaluation of peptidyl-vinylaminophosphonates as novel cysteine protease inhibitors.
    Bhattacharya AK; Rana KC
    Bioorg Med Chem; 2011 Dec; 19(23):7129-35. PubMed ID: 22019466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine protease inhibitors as chemotherapy for parasitic infections.
    McKerrow JH; Engel JC; Caffrey CR
    Bioorg Med Chem; 1999 Apr; 7(4):639-44. PubMed ID: 10353643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of inhibitors to identify essential cysteine proteinases of Trichomonas vaginalis.
    Irvine JW; North MJ; Coombs GH
    FEMS Microbiol Lett; 1997 Apr; 149(1):45-50. PubMed ID: 9103977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of cysteine proteases.
    Govardhan CP; Abeles RH
    Arch Biochem Biophys; 1996 Jun; 330(1):110-4. PubMed ID: 8651683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of synthesized inhibitors on babesipain-1, a new cysteine protease from the bovine piroplasm Babesia bigemina.
    Martins TM; Gonçalves LM; Capela R; Moreira R; do Rosário VE; Domingos A
    Transbound Emerg Dis; 2010 Apr; 57(1-2):68-9. PubMed ID: 20537109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.