BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17018078)

  • 1. A review of the analysis of vegetable oil residues from fire debris samples: analytical scheme, interpretation of the results, and future needs.
    Stauffer E
    J Forensic Sci; 2006 Sep; 51(5):1016-32. PubMed ID: 17018078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of the analysis of vegetable oil residues from fire debris samples: spontaneous ignition, vegetable oils, and the forensic approach.
    Stauffer E
    J Forensic Sci; 2005 Sep; 50(5):1091-100. PubMed ID: 16225213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical aspects of analyzing vegetable oils in fire debris.
    Schwenk LM; Reardon MR
    J Forensic Sci; 2009 Jul; 54(4):874-80. PubMed ID: 19467135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction, derivatization, and analysis of vegetable oils from fire debris.
    Gambrel AK; Reardon MR
    J Forensic Sci; 2008 Nov; 53(6):1372-80. PubMed ID: 18808371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative fuels in fire debris analysis: biodiesel basics.
    Stauffer E; Byron D
    J Forensic Sci; 2007 Mar; 52(2):371-9. PubMed ID: 17316234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the self-heating tendency of vegetable oils by differential scanning calorimetry.
    Baylon A; Stauffer E; Delémont O
    J Forensic Sci; 2008 Nov; 53(6):1334-43. PubMed ID: 18798771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for forensic identification of vegetable oil stains--rapid analysis of carboxylic acids with methyl esterification using purge-and-trap gas chromatography/mass spectrometry.
    Ehara Y; Sakamoto K; Marumo Y
    J Forensic Sci; 2001 Nov; 46(6):1462-9. PubMed ID: 11714160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comparison of solid phase microextraction-GC and static headspace-GC for determination of solvent residues in vegetable oils.
    Ligor M; Buszewski B
    J Sep Sci; 2008 Feb; 31(2):364-71. PubMed ID: 18196521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fingerprinting and source identification of an oil spill in China Bohai Sea by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry coupled with multi-statistical analyses.
    Sun P; Bao M; Li G; Wang X; Zhao Y; Zhou Q; Cao L
    J Chromatogr A; 2009 Jan; 1216(5):830-6. PubMed ID: 19118832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of fatty acid profiles in vegetable oils exploiting group-type patterning and enhanced sensitivity of comprehensive two-dimensional gas chromatography.
    Tranchida PQ; Giannino A; Mondello M; Sciarrone D; Dugo P; Dugo G; Mondello L
    J Sep Sci; 2008 Jun; 31(10):1797-802. PubMed ID: 18461644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of triglycerides in liquid and fire debris samples by triple quadrupole liquid chromatography-mass spectrometry.
    Bryant CM; Warnica JM; Chen R; Shepard C
    J Forensic Sci; 2021 Mar; 66(2):534-546. PubMed ID: 33136299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas chromatography/electron-capture negative ion mass spectrometry for the quantitative determination of 2- and 3-hydroxy fatty acids in bovine milk fat.
    Jenske R; Vetter W
    J Agric Food Chem; 2008 Jul; 56(14):5500-5. PubMed ID: 18570427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas chromatography/mass spectrometry of oils and oil binders in paintings.
    Blasko J; Kubinec R; Husová B; Prikryl P; Pacáková V; Stulík K; Hradilová J
    J Sep Sci; 2008 Apr; 31(6-7):1067-73. PubMed ID: 18306206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of grape seed oil using compressed carbon dioxide and propane: extraction yields and characterization of free glycerol compounds.
    Dos Santos Freitas L; de Oliveira JV; Dariva C; Jacques RA; Caramão EB
    J Agric Food Chem; 2008 Apr; 56(8):2558-64. PubMed ID: 18345635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample treatment and determination of pesticide residues in fatty vegetable matrices: a review.
    Gilbert-López B; García-Reyes JF; Molina-Díaz A
    Talanta; 2009 Jul; 79(2):109-28. PubMed ID: 19559852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative determination of epoxy acids, keto acids and hydroxy acids formed in fats and oils at frying temperatures.
    Marmesat S; Velasco J; Dobarganes MC
    J Chromatogr A; 2008 Nov; 1211(1-2):129-34. PubMed ID: 18849035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication.
    Hrastar R; Petrisic MG; Ogrinc N; Kosir IJ
    J Agric Food Chem; 2009 Jan; 57(2):579-85. PubMed ID: 19123821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of modern challenges in fire debris analysis.
    Baerncopf J; Hutches K
    Forensic Sci Int; 2014 Nov; 244():e12-20. PubMed ID: 25193144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.