These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17018079)

  • 1. Review of analytical techniques for arson residues.
    Pert AD; Baron MG; Birkett JW
    J Forensic Sci; 2006 Sep; 51(5):1033-49. PubMed ID: 17018079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fire investigation and ignitable liquid residue analysis--a review: 2001-2007.
    Sandercock PM
    Forensic Sci Int; 2008 Apr; 176(2-3):93-110. PubMed ID: 17949931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive two-dimensional gas chromatography-mass spectrometry: a review.
    Mondello L; Tranchida PQ; Dugo P; Dugo G
    Mass Spectrom Rev; 2008; 27(2):101-24. PubMed ID: 18240151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution.
    Lu Y; Chen P; Harrington PB
    Anal Bioanal Chem; 2009 Aug; 394(8):2061-7. PubMed ID: 19396432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical fingerprinting of petrochemicals for arson investigations using two-dimensional gas chromatography - flame ionisation detection and multivariate analysis.
    Pandohee J; Hughes JG; Pearson JR; A H Jones O
    Sci Justice; 2020 Jul; 60(4):381-387. PubMed ID: 32650940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and quantification of alkene-based drilling fluids in crude oils by comprehensive two-dimensional gas chromatography with flame ionization detection.
    Reddy CM; Nelson RK; Sylva SP; Xu L; Peacock EA; Raghuraman B; Mullins OC
    J Chromatogr A; 2007 Apr; 1148(1):100-7. PubMed ID: 17376464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The determination by gas chromatography with atomic emission detection of total sulfur in fuels used as forensic evidence.
    Kaneko T; Yoshida H; Suzuki S
    Forensic Sci Int; 2008 May; 177(2-3):112-9. PubMed ID: 18160239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences.
    Becker JS; Jakubowski N
    Chem Soc Rev; 2009 Jul; 38(7):1969-83. PubMed ID: 19551177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingerprinting and source identification of an oil spill in China Bohai Sea by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry coupled with multi-statistical analyses.
    Sun P; Bao M; Li G; Wang X; Zhao Y; Zhou Q; Cao L
    J Chromatogr A; 2009 Jan; 1216(5):830-6. PubMed ID: 19118832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review: Recent advancements and moving trends in chemical analysis of fire debris.
    Low Y; Tyrrell E; Gillespie E; Quigley C
    Forensic Sci Int; 2023 Apr; 345():111623. PubMed ID: 36921374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids.
    Pasikanti KK; Ho PC; Chan EC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Aug; 871(2):202-11. PubMed ID: 18479983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance testing of commercial containers for collection and storage of fire debris evidence.
    Williams MR; Sigman M
    J Forensic Sci; 2007 May; 52(3):579-85. PubMed ID: 17456085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.