These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17018358)
1. What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Trayanova N; Plank G; Rodríguez B Heart Rhythm; 2006 Oct; 3(10):1232-5. PubMed ID: 17018358 [No Abstract] [Full Text] [Related]
2. Cardiac electrophysiological experiments in numero, Part III: Simulation of arrhythmias and pacing. Malik M; Camm AJ Pacing Clin Electrophysiol; 1991 Dec; 14(12):2167-86. PubMed ID: 1723199 [TBL] [Abstract][Full Text] [Related]
3. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315 [TBL] [Abstract][Full Text] [Related]
4. [A possibility of significant lowering the defibrillation current by determining the right time for application of a defibrillating pulse. A mathematical model]. Pertsov AM; Biktashev VN; Ermakova EA; Krinskiĭ VI Biofizika; 1990; 35(3):500-3. PubMed ID: 2207196 [TBL] [Abstract][Full Text] [Related]
5. On boundary stimulation and optimal boundary control of the bidomain equations. Chamakuri N; Kunisch K; Plank G Math Biosci; 2013 Oct; 245(2):206-15. PubMed ID: 23856647 [TBL] [Abstract][Full Text] [Related]
6. Virtual electrode polarization in the far field: implications for external defibrillation. Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768 [TBL] [Abstract][Full Text] [Related]
7. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function. Skouibine K; Krassowska W Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414 [TBL] [Abstract][Full Text] [Related]
8. Approximate solution to the bidomain equations for defibrillation problems. Patel SG; Roth BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021908. PubMed ID: 15783353 [TBL] [Abstract][Full Text] [Related]
10. Vortex cordis as a mechanism of postshock activation: arrhythmia induction study using a bidomain model. Ashihara T; Namba T; Yao T; Ozawa T; Kawase A; Ikeda T; Nakazawa K; Ito M J Cardiovasc Electrophysiol; 2003 Mar; 14(3):295-302. PubMed ID: 12716113 [TBL] [Abstract][Full Text] [Related]
11. Arrhythmogenesis in the heart: Multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. Arevalo H; Rodriguez B; Trayanova N Chaos; 2007 Mar; 17(1):015103. PubMed ID: 17411260 [TBL] [Abstract][Full Text] [Related]
12. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. Rodríguez B; Tice BM; Eason JC; Aguel F; Trayanova N Heart Rhythm; 2004 Dec; 1(6):695-703. PubMed ID: 15851241 [TBL] [Abstract][Full Text] [Related]
13. Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Arevalo HJ; Boyle PM; Trayanova NA Prog Biophys Mol Biol; 2016 Jul; 121(2):185-94. PubMed ID: 27334789 [TBL] [Abstract][Full Text] [Related]
14. [The treatment of persistent ventricular arrhythmias using implantable automatic defibrillators]. Fromer M Schweiz Med Wochenschr; 1990 Oct; 120(42):1556-8. PubMed ID: 2237345 [No Abstract] [Full Text] [Related]
15. Postshock arrhythmogenesis in a slice of the canine heart. Hillebrenner MG; Eason JC; Campbell CA; Trayanova NA J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S249-56. PubMed ID: 14760930 [TBL] [Abstract][Full Text] [Related]
16. Bidomain simulations of defibrillation: 20 years of progress. Roth BJ Heart Rhythm; 2013 Aug; 10(8):1218-9. PubMed ID: 23643512 [No Abstract] [Full Text] [Related]