BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17018611)

  • 1. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition.
    Moreno-Bueno G; Cubillo E; Sarrió D; Peinado H; Rodríguez-Pinilla SM; Villa S; Bolós V; Jordá M; Fabra A; Portillo F; Palacios J; Cano A
    Cancer Res; 2006 Oct; 66(19):9543-56. PubMed ID: 17018611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition.
    Mejlvang J; Kriajevska M; Vandewalle C; Chernova T; Sayan AE; Berx G; Mellon JK; Tulchinsky E
    Mol Biol Cell; 2007 Nov; 18(11):4615-24. PubMed ID: 17855508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins.
    Haraguchi M; Okubo T; Miyashita Y; Miyamoto Y; Hayashi M; Crotti TN; McHugh KP; Ozawa M
    J Biol Chem; 2008 Aug; 283(35):23514-23. PubMed ID: 18593711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional factor snail controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma.
    Abdulkhalek S; Geen OD; Brodhagen L; Haxho F; Alghamdi F; Allison S; Simmons DJ; O'Shea LK; Neufeld RJ; Szewczuk MR
    Clin Transl Med; 2014 Dec; 3(1):28. PubMed ID: 26932374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2).
    Hudson LG; Newkirk KM; Chandler HL; Choi C; Fossey SL; Parent AE; Kusewitt DF
    J Dermatol Sci; 2009 Oct; 56(1):19-26. PubMed ID: 19643582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development.
    Schwartz R; Engel I; Fallahi-Sichani M; Petrie HT; Murre C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9976-81. PubMed ID: 16782810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDC20 is a potential target gene to inhibit the tumorigenesis of MDCK cells.
    Liu Z; Pei M; Liu G; Qiu Z; Wang S; Qiao Z; Wang J; Jin D; Zhang J; Duan K; Nian X; Ma Z; Yang X
    Biologicals; 2023 Aug; 83():101697. PubMed ID: 37579524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snail induces epithelial cell extrusion by regulating RhoA contractile signalling and cell-matrix adhesion.
    Wee K; Hediyeh-Zadeh S; Duszyc K; Verma S; N Nanavati B; Khare S; Varma A; Daly RJ; Yap AS; Davis MJ; Budnar S
    J Cell Sci; 2020 Jul; 133(13):. PubMed ID: 32467325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy.
    Yastrebova MA; Khamidullina AI; Tatarskiy VV; Scherbakov AM
    Acta Naturae; 2021; 13(1):76-90. PubMed ID: 33959388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New functions for the Snail family of transcription factors: Two-faced proteins.
    Pérez-Losada J; Sanchez-Garcia I
    Cell Cycle; 2010 Jul; 9(14):2706-8. PubMed ID: 20676033
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcriptional bodies manage tight resources.
    Stec N; Klosin A
    Nat Cell Biol; 2024 Apr; 26(4):512-513. PubMed ID: 38589532
    [No Abstract]   [Full Text] [Related]  

  • 12. Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma.
    Zheng M; Jiang YP; Chen W; Li KD; Liu X; Gao SY; Feng H; Wang SS; Jiang J; Ma XR; Cen X; Tang YJ; Chen Y; Lin YF; Tang YL; Liang XH
    Oncotarget; 2015 Mar; 6(9):6797-810. PubMed ID: 25762643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions.
    Siemens H; Jackstadt R; Hünten S; Kaller M; Menssen A; Götz U; Hermeking H
    Cell Cycle; 2011 Dec; 10(24):4256-71. PubMed ID: 22134354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer.
    Kumarswamy R; Mudduluru G; Ceppi P; Muppala S; Kozlowski M; Niklinski J; Papotti M; Allgayer H
    Int J Cancer; 2012 May; 130(9):2044-53. PubMed ID: 21633953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.
    Wellner U; Schubert J; Burk UC; Schmalhofer O; Zhu F; Sonntag A; Waldvogel B; Vannier C; Darling D; zur Hausen A; Brunton VG; Morton J; Sansom O; Schüler J; Stemmler MP; Herzberger C; Hopt U; Keck T; Brabletz S; Brabletz T
    Nat Cell Biol; 2009 Dec; 11(12):1487-95. PubMed ID: 19935649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.
    Kong W; Yang H; He L; Zhao JJ; Coppola D; Dalton WS; Cheng JQ
    Mol Cell Biol; 2008 Nov; 28(22):6773-84. PubMed ID: 18794355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2.
    Park SM; Gaur AB; Lengyel E; Peter ME
    Genes Dev; 2008 Apr; 22(7):894-907. PubMed ID: 18381893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkin deficiency promotes liver cancer metastasis by TMEFF1 transcription activation via TGF-β/Smad2/3 pathway.
    Su Q; Wang JJ; Ren JY; Wu Q; Chen K; Tu KH; Zhang Y; Leong SW; Sarwar A; Han X; Zhang M; Dai WF; Zhang YM
    Acta Pharmacol Sin; 2024 Mar; ():. PubMed ID: 38519646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ST14 interacts with TMEFF1 and is a predictor of poor prognosis in ovarian cancer.
    Nie X; Gao L; Zheng M; Wang S; Wang C; Li X; Liu O; Gou R; Liu J; Lin B
    BMC Cancer; 2024 Mar; 24(1):330. PubMed ID: 38468232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic signatures of individual cell types in cerebral cavernous malformation.
    Li Y; Girard R; Srinath A; Cruz DV; Ciszewski C; Chen C; Lightle R; Romanos S; Sone JY; Moore T; DeBiasse D; Stadnik A; Lee JJ; Shenkar R; Koskimäki J; Lopez-Ramirez MA; Marchuk DA; Ginsberg MH; Kahn ML; Shi C; Awad IA
    Cell Commun Signal; 2024 Jan; 22(1):23. PubMed ID: 38195510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.