BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17019036)

  • 1. Resolution of axial shear strain elastography.
    Thitaikumar A; Righetti R; Krouskop TA; Ophir J
    Phys Med Biol; 2006 Oct; 51(20):5245-57. PubMed ID: 17019036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasticity reconstruction for ultrasound elastography using a radial compression: an inverse approach.
    Luo J; Ying K; Bai J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e195-8. PubMed ID: 16854445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing image quality in effective Poisson's ratio elastography and poroelastography: I.
    Righetti R; Srinivasan S; Kumar AT; Ophir J; Krouskop TA
    Phys Med Biol; 2007 Mar; 52(5):1303-20. PubMed ID: 17301456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental three dimensional strain estimation from ultrasonic sectorial data.
    Said G; Basset O; Mari JM; Cachard C; Brusseau E; Vray D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e189-93. PubMed ID: 16870223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise reduction using spatial-angular compounding for elastography.
    Techavipoo U; Chen Q; Varghese T; Zagzebski JA; Madsen EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):510-20. PubMed ID: 15217229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing image quality in effective Poisson's ratio elastography and poroelastography: II.
    Righetti R; Ophir J; Kumar AT; Krouskop TA
    Phys Med Biol; 2007 Mar; 52(5):1321-33. PubMed ID: 17301457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast tumor classification using axial shear strain elastography: a feasibility study.
    Thitaikumar A; Mobbs LM; Kraemer-Chant CM; Garra BS; Ophir J
    Phys Med Biol; 2008 Sep; 53(17):4809-23. PubMed ID: 18701768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical derivation of SNR, CNR and spatial resolution for a local adaptive strain estimator for elastography.
    Srinivasan S; Ophir J; Alam SK
    Ultrasound Med Biol; 2004 Sep; 30(9):1185-97. PubMed ID: 15550322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The feasibility of estimating and imaging the mechanical behavior of poroelastic materials using axial strain elastography.
    Righetti R; Righetti M; Ophir J; Krouskop TA
    Phys Med Biol; 2007 Jun; 52(11):3241-59. PubMed ID: 17505100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angular strain estimation method for elastography.
    Bae U; Kim Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2653-61. PubMed ID: 18276572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the optimal maximum beam angle and angular increment for normal and shear strain estimation.
    Rao M; Varghese T
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):760-9. PubMed ID: 19272930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements.
    Elkateb Hachemi M; Callé S; Remenieras JP
    Ultrasonics; 2006 Dec; 44 Suppl 1():e221-5. PubMed ID: 16843510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of bonding at an inclusion boundary using axial-shear strain elastography: a feasibility study.
    Thitaikumar A; Krouskop TA; Garra BS; Ophir J
    Phys Med Biol; 2007 May; 52(9):2615-33. PubMed ID: 17440256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
    Chen H; Varghese T; Rahko PS; Zagzebski JA
    Ultrasonics; 2009 Jan; 49(1):98-111. PubMed ID: 18657839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.
    Xia R; Thittai AK
    Ultrasound Med Biol; 2014 Mar; 40(3):485-95. PubMed ID: 24361216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
    Suga M; Matsuda T; Minato K; Oshiro O; Chihara K; Okamoto J; Takizawa O; Komori M; Takahashi T
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):908-15. PubMed ID: 12848359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental characterization of elastographic spatial resolution: analysis of the trade-offs between spatial resolution and contrast-to-noise ratio.
    Srinivasan S; Righetti R; Ophir J
    Ultrasound Med Biol; 2004 Oct; 30(10):1269-80. PubMed ID: 15582226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.