BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1701916)

  • 1. Post-ischaemic administration of hyperosmolar mannitol enhances erythrocyte trapping in outer medullary vasculature in the rat kidney.
    Hellberg O; Nygren A; Hansell P; Fasching A
    Ren Physiol Biochem; 1990; 13(6):328-32. PubMed ID: 1701916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red-cell trapping in the rat renal microcirculation induced by low-osmolar contrast media and mannitol.
    Nygren A; Hellberg O; Hansell P
    Invest Radiol; 1993 Nov; 28(11):1033-8. PubMed ID: 8276574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney.
    Liss P; Nygren A; Olsson U; Ulfendahl HR; Erikson U
    Kidney Int; 1996 May; 49(5):1268-75. PubMed ID: 8731090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla.
    Olof P; Hellberg A; Källskog O; Wolgast M
    Kidney Int; 1991 Oct; 40(4):625-31. PubMed ID: 1745011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does mannitol save the kidney?
    Gelman S
    Anesth Analg; 1996 May; 82(5):899-901. PubMed ID: 8610895
    [No Abstract]   [Full Text] [Related]  

  • 6. Nephron function in the early phase of ischemic renal failure. Significance of erythrocyte trapping.
    Hellberg PO; Källskog O; Wolgast M
    Kidney Int; 1990 Sep; 38(3):432-9. PubMed ID: 2232485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood reflow after renal ischemia. Effects of hypertonic mannitol on reflow and tubular necrosis after transient ischemia in the rat.
    Franklin WA; Ganote CE; Jennings RB
    Arch Pathol; 1974 Aug; 98(2):106-11. PubMed ID: 4835092
    [No Abstract]   [Full Text] [Related]  

  • 8. Lack of casual relationship between medullary blood congestion and tubular necrosis in postischaemic kidney damage.
    Andersson G; Jennische E
    Acta Physiol Scand; 1987 Jul; 130(3):429-32. PubMed ID: 3630721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cold ischemia and reperfusion on trapping of erythrocytes in the rat kidney.
    Jacobsson J; Odlind B; Tufveson G; Wahlberg J
    Transpl Int; 1988 Jul; 1(2):75-9. PubMed ID: 3076384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of erythrocyte trapping in ischaemic acute renal failure.
    Bayati A; Christofferson R; Källskog O; Wolgast M
    Acta Physiol Scand; 1990 Jan; 138(1):13-23. PubMed ID: 2309565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The long-term outcome of post-ischaemic acute renal failure in the rat. I. A functional study after treatment with SOD and sucrose.
    Bayati A; Källskog O; Wolgast M
    Acta Physiol Scand; 1990 Jan; 138(1):25-33. PubMed ID: 2309566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell trapping after ischemia and long-term kidney damage. Influence of hematocrit.
    Hellberg PO; Bayati A; Källskog O; Wolgast M
    Kidney Int; 1990 May; 37(5):1240-7. PubMed ID: 2345422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable results of calcium blockade in post-ischaemic renal failure.
    Leahy AL; Fitzpatrick JM; Wait RB
    Eur Urol; 1988; 14(3):222-5. PubMed ID: 3383933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney.
    Boesen EI; Pollock DM
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F185-91. PubMed ID: 16912066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathophysiology of Red Blood Cell Trapping in Ischemic Acute Kidney Injury.
    McLarnon SR
    Compr Physiol; 2023 Dec; 14(1):5325-5343. PubMed ID: 38158367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hyperosmolality on calcium mobilization in renal inner medulla: relationship to alterations in prostaglandin E synthesis.
    Craven PA; Studer RK; DeRubertis FR
    J Lab Clin Med; 1982 Jun; 99(6):806-15. PubMed ID: 6804583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure.
    Mason J; Torhorst J; Welsch J
    Kidney Int; 1984 Sep; 26(3):283-93. PubMed ID: 6513274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mannitol on the postischemic kidney. Biochemical, functional, and morphologic assessments.
    Zager RA; Mahan J; Merola AJ
    Lab Invest; 1985 Oct; 53(4):433-42. PubMed ID: 3930877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superficial nephron obstruction and medullary congestion after ischemic injury: effect of protective treatments.
    de Rougemont D; Brunner FP; Torhorst J; Wunderlich PF; Thiel G
    Nephron; 1982; 31(4):310-20. PubMed ID: 6757772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of contrast media on renal microcirculation and oxygen tension. An experimental study in the rat.
    Liss P
    Acta Radiol Suppl; 1997; 409():1-29. PubMed ID: 9100489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.