BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17019572)

  • 1. A microchip sensor for calcium determination.
    Caglar P; Tuncel SA; Malcik N; Landers JP; Ferrance JP
    Anal Bioanal Chem; 2006 Nov; 386(5):1303-12. PubMed ID: 17019572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA adsorption onto polyethylenimine-attached poly(p-chloromethylstyrene) beads.
    Unsal E; Bahar T; Tuncel M; Tuncel A
    J Chromatogr A; 2000 Nov; 898(2):167-77. PubMed ID: 11117414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an integrated direct-contacting optical-fiber microchip with light-emitting diode-induced fluorescence detection.
    Liu C; Cui D; Chen X
    J Chromatogr A; 2007 Nov; 1170(1-2):101-6. PubMed ID: 17915241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode.
    Liu R; Ishimatsu R; Yahiro M; Adachi C; Nakano K; Imato T
    Talanta; 2015 Jan; 132():96-105. PubMed ID: 25476284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device.
    Miyaki K; Guo Y; Shimosaka T; Nakagama T; Nakajima H; Uchiyama K
    Anal Bioanal Chem; 2005 Jun; 382(3):810-6. PubMed ID: 15883790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications.
    Lee SH; Kang DH; Kim HN; Suh KY
    Lab Chip; 2010 Dec; 10(23):3300-6. PubMed ID: 20938498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane).
    Ishida A; Natsume M; Kamidate T
    J Chromatogr A; 2008 Dec; 1213(2):209-17. PubMed ID: 18992887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and highly sensitive detection of cholesterol using polymer microfluidic devices and amperometric system.
    Ruecha N; Siangproh W; Chailapakul O
    Talanta; 2011 Jun; 84(5):1323-8. PubMed ID: 21641446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of a Surface-functionalized Power-free PDMS Microchip for MicroRNA Detection Utilizing Electron Beam-induced Graft Polymerization.
    Ishihara R; Uchino Y; Hosokawa K; Maeda M; Kikuchi A
    Anal Sci; 2017; 33(2):197-202. PubMed ID: 28190840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic device using a green organic light emitting diode as an integrated excitation source.
    Yao B; Luo G; Wang L; Gao Y; Lei G; Ren K; Chen L; Wang Y; Hu Y; Qiu Y
    Lab Chip; 2005 Oct; 5(10):1041-7. PubMed ID: 16175258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip.
    Liu J; Zhao J; Petrochenko P; Zheng J; Hewlett I
    Biosens Bioelectron; 2016 Dec; 86():150-155. PubMed ID: 27362253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microchip CE analysis of amino acids on a titanium dioxide nanoparticles-coated PDMS microfluidic device with in-channel indirect amperometric detection.
    Qiu JD; Wang L; Liang RP; Wang JW
    Electrophoresis; 2009 Oct; 30(19):3472-9. PubMed ID: 19757433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of proteins on surface-modified poly(dimethylsiloxane) microfluidic devices.
    Dou YH; Bao N; Xu JJ; Meng F; Chen HY
    Electrophoresis; 2004 Sep; 25(17):3024-31. PubMed ID: 15349944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism.
    Wu MH; Wang J; Taha T; Cui Z; Urban JP; Cui Z
    Biomed Microdevices; 2007 Apr; 9(2):167-74. PubMed ID: 17160706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured CaCO₃-poly(ethyleneimine) microparticles for phenol sensing in fluidic microsystem.
    Mayorga-Martinez CC; Hlavata L; Miserere S; López-Marzo A; Labuda J; Pons J; Merkoçi A
    Electrophoresis; 2013 Jul; 34(14):2011-6. PubMed ID: 23670798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-responsive uniform latex particles based on p-chloromethylstyrene.
    Elmas B; Camli ST; Tuncel M; Senel S; Tunce A
    J Biomater Sci Polym Ed; 2001; 12(3):283-96. PubMed ID: 11484937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.