BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17019621)

  • 1. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars.
    Barbehenn RV; Jones CP; Hagerman AE; Karonen M; Salminen JP
    J Chem Ecol; 2006 Oct; 32(10):2253-67. PubMed ID: 17019621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannin composition affects the oxidative activities of tree leaves.
    Barbehenn RV; Jones CP; Karonen M; Salminen JP
    J Chem Ecol; 2006 Oct; 32(10):2235-51. PubMed ID: 17031601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.
    Barbehenn R; Weir Q; Salminen JP
    J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ellagitannins, gallotannins, and gallo-ellagitannins from the galls of Tamarix aphylla.
    Orabi MA; Yoshimura M; Amakura Y; Hatano T
    Fitoterapia; 2015 Jul; 104():55-63. PubMed ID: 25987319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of ellagi- and gallotannins on rat intestinal alpha-glucosidase complexes.
    Toda M; Kawabata J; Kasai T
    Biosci Biotechnol Biochem; 2001 Mar; 65(3):542-7. PubMed ID: 11330666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of gallotannins and ellagitannins.
    Li M; Kai Y; Qiang H; Dongying J
    J Basic Microbiol; 2006; 46(1):68-84. PubMed ID: 16463321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.
    Tuominen A
    Phytochemistry; 2013 Nov; 95():408-20. PubMed ID: 24050514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of gallotannins: beta-glucogallin-dependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,6-tetragalloylglucose.
    Cammann J; Denzel K; Schilling G; Gross GG
    Arch Biochem Biophys; 1989 Aug; 273(1):58-63. PubMed ID: 2757399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical studies of proanthocyanidins and hydrolyzable tannins.
    Bors W; Foo LY; Hertkorn N; Michel C; Stettmaier K
    Antioxid Redox Signal; 2001 Dec; 3(6):995-1008. PubMed ID: 11813994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of pentagalloylglucose to the ellagitannin, tellimagrandin II, by a phenol oxidase from Tellima grandiflora leaves.
    Niemetz R; Gross GG
    Phytochemistry; 2003 Feb; 62(3):301-6. PubMed ID: 12620341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate.
    Hartzfeld PW; Forkner R; Hunter MD; Hagerman AE
    J Agric Food Chem; 2002 Mar; 50(7):1785-90. PubMed ID: 11902913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS.
    Tuominen A; Sundman T
    Phytochem Anal; 2013; 24(5):424-35. PubMed ID: 23798544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredients in seafood.
    González MJ; Torres JL; Medina I
    J Agric Food Chem; 2010 Apr; 58(7):4274-83. PubMed ID: 20222659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Dehydrohexahydroxydiphenoyl Esters by Oxidative Coupling of Galloyl Esters in an Aqueous Medium Involved in Ellagitannin Biosynthesis.
    Yamashita T; Matsuo Y; Saito Y; Tanaka T
    Chem Asian J; 2021 Jul; 16(13):1735-1740. PubMed ID: 33960720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins.
    Fujieda M; Tanaka T; Suwa Y; Koshimizu S; Kouno I
    J Agric Food Chem; 2008 Aug; 56(16):7305-10. PubMed ID: 18672883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tannins in plant-herbivore interactions.
    Barbehenn RV; Peter Constabel C
    Phytochemistry; 2011 Sep; 72(13):1551-65. PubMed ID: 21354580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Oxidative Activity of Ellagitannins Dictates Their Tendency To Form Highly Stabilized Complexes with Bovine Serum Albumin at Increased pH.
    Engström MT; Sun X; Suber MP; Li M; Salminen JP; Hagerman AE
    J Agric Food Chem; 2016 Nov; 64(47):8994-9003. PubMed ID: 27809509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Features of Hydrolyzable Tannins Determine Their Ability to Form Insoluble Complexes with Bovine Serum Albumin.
    Engström MT; Arvola J; Nenonen S; Virtanen VTJ; Leppä MM; Tähtinen P; Salminen JP
    J Agric Food Chem; 2019 Jun; 67(24):6798-6808. PubMed ID: 31134805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.