These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 17019724)
1. Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery. Feng M; Li P J Biomed Mater Res A; 2007 Jan; 80(1):184-93. PubMed ID: 17019724 [TBL] [Abstract][Full Text] [Related]
2. [PEI-PMMA cationic nanoparticles as carriers for gene transfer]. Feng M; Li P Yao Xue Xue Bao; 2005 Oct; 40(10):893-7. PubMed ID: 16408804 [TBL] [Abstract][Full Text] [Related]
3. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Zhu J; Tang A; Law LP; Feng M; Ho KM; Lee DK; Harris FW; Li P Bioconjug Chem; 2005; 16(1):139-46. PubMed ID: 15656585 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Inphonlek S; Pimpha N; Sunintaboon P Colloids Surf B Biointerfaces; 2010 Jun; 77(2):219-26. PubMed ID: 20189779 [TBL] [Abstract][Full Text] [Related]
5. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells. Ho KM; Mao X; Gu L; Li P Langmuir; 2008 Oct; 24(19):11036-42. PubMed ID: 18788820 [TBL] [Abstract][Full Text] [Related]
6. Intracellular uptake and release of poly(ethyleneimine)-co-poly(methyl methacrylate) nanoparticle/pDNA complexes for gene delivery. Feng M; Lee D; Li P Int J Pharm; 2006 Mar; 311(1-2):209-14. PubMed ID: 16442245 [TBL] [Abstract][Full Text] [Related]
7. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. Papadimitriou S; Bikiaris D J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585 [TBL] [Abstract][Full Text] [Related]
8. Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery. Sun HW; Zhang LY; Zhu XJ; Wang XF J Biomater Sci Polym Ed; 2009; 20(12):1675-86. PubMed ID: 19723435 [TBL] [Abstract][Full Text] [Related]
9. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization. Jang J; Kim S; Lee KJ Chem Commun (Camb); 2007 Jul; (26):2689-91. PubMed ID: 17594021 [TBL] [Abstract][Full Text] [Related]
11. In vitro characterization and invivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Dhana Lekshmi UM; Poovi G; Kishore N; Reddy PN Int J Pharm; 2010 Aug; 396(1-2):194-203. PubMed ID: 20600729 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Cui F; Qian F; Zhao Z; Yin L; Tang C; Yin C Biomacromolecules; 2009 May; 10(5):1253-8. PubMed ID: 19292439 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Wei H; Zhang X; Cheng C; Cheng SX; Zhuo RX Biomaterials; 2007 Jan; 28(1):99-107. PubMed ID: 16959312 [TBL] [Abstract][Full Text] [Related]
14. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test. Ratanajanchai M; Soodvilai S; Pimpha N; Sunintaboon P Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():377-83. PubMed ID: 24268272 [TBL] [Abstract][Full Text] [Related]
15. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging. Ratanajanchai M; Lee DH; Sunintaboon P; Yang SG J Colloid Interface Sci; 2014 Feb; 415():70-6. PubMed ID: 24267331 [TBL] [Abstract][Full Text] [Related]
16. Preparation and in vitro evaluation of topical formulations based on polystyrene-poly-2-hydroxyl methacrylate nanoparticles. Wu X; Griffin P; Price GJ; Guy RH Mol Pharm; 2009; 6(5):1449-56. PubMed ID: 19630401 [TBL] [Abstract][Full Text] [Related]
17. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. Wang Y; Xiao Y; Huang X; Lang M J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216 [TBL] [Abstract][Full Text] [Related]
18. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy. Zhang HZ; Gao FP; Liu LR; Li XM; Zhou ZM; Yang XD; Zhang QQ Colloids Surf B Biointerfaces; 2009 Jun; 71(1):19-26. PubMed ID: 19186037 [TBL] [Abstract][Full Text] [Related]
19. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release. Shu S; Zhang X; Teng D; Wang Z; Li C Carbohydr Res; 2009 Jul; 344(10):1197-204. PubMed ID: 19508912 [TBL] [Abstract][Full Text] [Related]
20. Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Du YZ; Ying XY; Wang L; Zhai Y; Yuan H; Yu RS; Hu FQ Int J Pharm; 2010 Jun; 392(1-2):164-9. PubMed ID: 20362652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]