BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17020536)

  • 1. Evidence that the mechanism of antibody-catalysed hydrolysis of arylcarbamates can be determined by the structure of the immunogen used to elicit the catalytic antibody.
    Boucher G; Said B; Ostler EL; Resmini M; Brocklehurst K; Gallacher G
    Biochem J; 2007 Feb; 401(3):721-6. PubMed ID: 17020536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic antibody activity elicited by active immunisation. Evidence for natural variation involving preferential stabilization of the transition state.
    Gallacher G; Jackson CS; Searcey M; Goel R; Mellor GW; Smith CZ; Brocklehurst K
    Eur J Biochem; 1993 May; 214(1):197-207. PubMed ID: 8508792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of antibody acyl hydrolysis catalysis using a large set of related haptens.
    Odenbaugh AL; Helms ED; Iverson BL
    Bioorg Med Chem; 2000 Feb; 8(2):413-26. PubMed ID: 10722164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polyclonal antibody preparation with Michaelian catalytic properties.
    Gallacher G; Jackson CS; Searcey M; Badman GT; Goel R; Topham CM; Mellor GW; Brocklehurst K
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):871-81. PubMed ID: 1953683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of flexible and constrained haptens in eliciting antibody catalysts for paraoxon hydrolysis.
    Spivak DA; Hoffman TZ; Moore AH; Taylor MJ; Janda KD
    Bioorg Med Chem; 1999 Jun; 7(6):1145-50. PubMed ID: 10428386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyclonal antibody-catalysed amide hydrolysis.
    Gallacher G; Searcey M; Jackson CS; Brocklehurst K
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):675-80. PubMed ID: 1622388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition by cholesterol esterase of active site ligands: structure-reactivity effects for inhibition by aryl carbamates and subsequent carbamylenzyme turnover.
    Feaster SR; Lee K; Baker N; Hui DY; Quinn DM
    Biochemistry; 1996 Dec; 35(51):16723-34. PubMed ID: 8988009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarities of hydrolytic antibodies revealed by their X-ray structures: a review.
    Charbonnier JB; Gigant B; Golinelli-Pimpaneau B; Knossow M
    Biochimie; 1997 Nov; 79(11):653-60. PubMed ID: 9479447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The generation of antibody combining sites containing catalytic residues.
    Shokat KM; Schultz PG
    Ciba Found Symp; 1991; 159():118-28; discussion 128-34. PubMed ID: 1959444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrobenzyl phosphonate hapten.
    Tawfik DS; Lindner AB; Chap R; Eshhar Z; Green BS
    Eur J Biochem; 1997 Mar; 244(2):619-26. PubMed ID: 9119032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis.
    Wentworth P; Liu Y; Wentworth AD; Fan P; Foley MJ; Janda KD
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5971-5. PubMed ID: 9600901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in hydrolytic antibody activity by change in haptenic structure from phosphate to phosphonate with retention of a common leaving-group determinant: evidence for the 'flexibility' hypothesis.
    Gul S; Sonkaria S; Pinitglang S; Florez-Alvarez J; Hussain S; Thomas EW; Ostler EL; Gallacher G; Resmini M; Brocklehurst K
    Biochem J; 2003 Dec; 376(Pt 3):813-21. PubMed ID: 12946271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the hydrolytic activity of a polyclonal catalytic antibody preparation by pH-dependence and chemical modification studies: evidence for the involvement of Tyr and Arg side chains as hydrogen-bond donors.
    Resmini M; Vigna R; Simms C; Barber NJ; Hagi-Pavli EP; Watts AB; Verma C; Gallacher G; Brocklehurst K
    Biochem J; 1997 Aug; 326 ( Pt 1)(Pt 1):279-87. PubMed ID: 9337880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large rate accelerations in antibody catalysis by strategic use of haptenic charge.
    Thorn SN; Daniels RG; Auditor MT; Hilvert D
    Nature; 1995 Jan; 373(6511):228-30. PubMed ID: 7816136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rat monoclonal antibody that catalyses the hydrolysis of a nitrophenyl-beta-lactam.
    Ostler EL; Dean CJ; Barber N; Valeri M; James S; Resmini M; Boucher G; Romanov N; Brocklehurst K; Gallacher G
    Biochem Biophys Res Commun; 2002 Nov; 299(2):273-6. PubMed ID: 12437982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new strategy for the generation of catalytic antibodies.
    Shokat KM; Leumann CJ; Sugasawara R; Schultz PG
    Nature; 1989 Mar; 338(6212):269-71. PubMed ID: 2922053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination.
    Wenthur CJ; Cai X; Ellis BA; Janda KD
    Bioorg Med Chem Lett; 2017 Aug; 27(16):3666-3668. PubMed ID: 28709828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse structural solutions to catalysis in a family of antibodies.
    Gigant B; Tsumuraya T; Fujii I; Knossow M
    Structure; 1999 Nov; 7(11):1385-93. PubMed ID: 10574796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependence and structure-activity relationships in the papain-catalysed hydrolysis of anilides.
    Lowe G; Yuthavong Y
    Biochem J; 1971 Aug; 124(1):117-22. PubMed ID: 5126467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.