BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17020585)

  • 1. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism.
    Heidrich N; Chinali A; Gerth U; Brantl S
    Mol Microbiol; 2006 Oct; 62(2):520-36. PubMed ID: 17020585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA.
    Heidrich N; Moll I; Brantl S
    Nucleic Acids Res; 2007; 35(13):4331-46. PubMed ID: 17576690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis.
    Licht A; Preis S; Brantl S
    Mol Microbiol; 2005 Oct; 58(1):189-206. PubMed ID: 16164558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon.
    Gimpel M; Heidrich N; Mäder U; Krügel H; Brantl S
    Mol Microbiol; 2010 May; 76(4):990-1009. PubMed ID: 20444087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SR1--a small RNA with two remarkably conserved functions.
    Gimpel M; Preis H; Barth E; Gramzow L; Brantl S
    Nucleic Acids Res; 2012 Dec; 40(22):11659-72. PubMed ID: 23034808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in
    Müller P; Gimpel M; Wildenhain T; Brantl S
    RNA Biol; 2019 Jul; 16(7):972-987. PubMed ID: 31043113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis.
    Eckart RA; Brantl S; Licht A
    FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2004 Jul; 53(2):599-611. PubMed ID: 15228537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism.
    Klingel U; Miller CM; North AK; Stockley PG; Baumberg S
    Mol Gen Genet; 1995 Aug; 248(3):329-40. PubMed ID: 7565595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites.
    Miller CM; Baumberg S; Stockley PG
    Mol Microbiol; 1997 Oct; 26(1):37-48. PubMed ID: 9383188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes--a genomic approach.
    Moreno-Campuzano S; Janga SC; Pérez-Rueda E
    BMC Genomics; 2006 Jun; 7():147. PubMed ID: 16772031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis.
    Ujiie H; Matsutani T; Tomatsu H; Fujihara A; Ushida C; Miwa Y; Fujita Y; Himeno H; Muto A
    J Biochem; 2009 Jan; 145(1):59-66. PubMed ID: 18977770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5' rpoS mRNA leader region.
    Updegrove T; Wilf N; Sun X; Wartell RM
    Biochemistry; 2008 Oct; 47(43):11184-95. PubMed ID: 18826256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic control by cis-acting regulatory RNAs in Bacillus subtilis: general principles and prospects for discovery.
    Irnov ; Kertsburg A; Winkler WC
    Cold Spring Harb Symp Quant Biol; 2006; 71():239-49. PubMed ID: 17381303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of nitrogen metabolism in gram-positive bacteria].
    Doroshchuk NA; Gel'fand MS; Rodionov DA
    Mol Biol (Mosk); 2006; 40(5):919-26. PubMed ID: 17086994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel small RNA-encoding genes in the intergenic regions of Bacillus subtilis.
    Saito S; Kakeshita H; Nakamura K
    Gene; 2009 Jan; 428(1-2):2-8. PubMed ID: 18948176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new role for SR1 from Bacillus subtilis: regulation of sporulation by inhibition of kinA translation.
    Ul Haq I; Brantl S; Müller P
    Nucleic Acids Res; 2021 Oct; 49(18):10589-10603. PubMed ID: 34478554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.