These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17020746)
1. Redox potentials of the blue copper sites of bilirubin oxidases. Christenson A; Shleev S; Mano N; Heller A; Gorton L Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746 [TBL] [Abstract][Full Text] [Related]
2. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Ramírez P; Mano N; Andreu R; Ruzgas T; Heller A; Gorton L; Shleev S Biochim Biophys Acta; 2008 Oct; 1777(10):1364-9. PubMed ID: 18639515 [TBL] [Abstract][Full Text] [Related]
3. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria. Ivnitski D; Artyushkova K; Atanassov P Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994 [TBL] [Abstract][Full Text] [Related]
4. Bilirubin oxidases in bioelectrochemistry: features and recent findings. Mano N; Edembe L Biosens Bioelectron; 2013 Dec; 50():478-85. PubMed ID: 23911663 [TBL] [Abstract][Full Text] [Related]
5. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase. Filip J; Tkac J Bioelectrochemistry; 2014 Apr; 96():14-20. PubMed ID: 24361897 [TBL] [Abstract][Full Text] [Related]
6. Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction. Cracknell JA; McNamara TP; Lowe ED; Blanford CF Dalton Trans; 2011 Jul; 40(25):6668-75. PubMed ID: 21544308 [TBL] [Abstract][Full Text] [Related]
7. Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases. Suraniti E; Abintou M; Durand F; Mano N Bioelectrochemistry; 2012 Dec; 88():65-9. PubMed ID: 22772078 [TBL] [Abstract][Full Text] [Related]
8. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells. Durand F; Kjaergaard CH; Suraniti E; Gounel S; Hadt RG; Solomon EI; Mano N Biosens Bioelectron; 2012 May; 35(1):140-146. PubMed ID: 22410485 [TBL] [Abstract][Full Text] [Related]
9. Compensatory binding of an asparagine residue to the coordination-unsaturated type I Cu center in bilirubin oxidase mutants. Kataoka K; Tsukamoto K; Kitagawa R; Ito T; Sakurai T Biochem Biophys Res Commun; 2008 Jul; 371(3):416-9. PubMed ID: 18445482 [TBL] [Abstract][Full Text] [Related]
10. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190. Han X; Zhao M; Lu L; Liu Y Fungal Biol; 2012 Aug; 116(8):863-71. PubMed ID: 22862914 [TBL] [Abstract][Full Text] [Related]
11. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Lalaoui N; Le Goff A; Holzinger M; Cosnier S Chemistry; 2015 Nov; 21(47):16868-73. PubMed ID: 26449635 [TBL] [Abstract][Full Text] [Related]
12. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related]
13. Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss. Tasca F; Farias D; Castro C; Acuna-Rougier C; Antiochia R PLoS One; 2015; 10(7):e0132181. PubMed ID: 26196288 [TBL] [Abstract][Full Text] [Related]
14. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 A resolution using a twinned crystal. Mizutani K; Toyoda M; Sagara K; Takahashi N; Sato A; Kamitaka Y; Tsujimura S; Nakanishi Y; Sugiura T; Yamaguchi S; Kano K; Mikami B Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jul; 66(Pt 7):765-70. PubMed ID: 20606269 [TBL] [Abstract][Full Text] [Related]
15. Insight into multicopper oxidase laccase from Agrawal K; Shankar J; Kumar R; Verma P J Environ Sci Health B; 2020; 55(12):1048-1060. PubMed ID: 32877269 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Shleev S; Christenson A; Serezhenkov V; Burbaev D; Yaropolov A; Gorton L; Ruzgas T Biochem J; 2005 Feb; 385(Pt 3):745-54. PubMed ID: 15453829 [TBL] [Abstract][Full Text] [Related]
17. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Kataoka K; Kitagawa R; Inoue M; Naruse D; Sakurai T; Huang HW Biochemistry; 2005 May; 44(18):7004-12. PubMed ID: 15865445 [TBL] [Abstract][Full Text] [Related]
18. The reversible change in the redox state of type I Cu in Myrothecium verrucaria bilirubin oxidase depending on pH. Zoppellaro G; Sakurai N; Kataoka K; Sakurai T Biosci Biotechnol Biochem; 2004 Sep; 68(9):1998-2000. PubMed ID: 15388981 [TBL] [Abstract][Full Text] [Related]
19. Roles of the indole ring of Trp396 covalently bound with the imidazole ring of His398 coordinated to type I copper in bilirubin oxidase. Kataoka K; Ito T; Okuda Y; Sakai Y; Yamashita S; Sakurai T Biochem Biophys Res Commun; 2020 Jan; 521(3):620-624. PubMed ID: 31679691 [TBL] [Abstract][Full Text] [Related]
20. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. Lalaoui N; Holzinger M; Le Goff A; Cosnier S Chemistry; 2016 Jul; 22(30):10494-500. PubMed ID: 27328033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]