BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17020746)

  • 1. Redox potentials of the blue copper sites of bilirubin oxidases.
    Christenson A; Shleev S; Mano N; Heller A; Gorton L
    Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase.
    Ramírez P; Mano N; Andreu R; Ruzgas T; Heller A; Gorton L; Shleev S
    Biochim Biophys Acta; 2008 Oct; 1777(10):1364-9. PubMed ID: 18639515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria.
    Ivnitski D; Artyushkova K; Atanassov P
    Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilirubin oxidases in bioelectrochemistry: features and recent findings.
    Mano N; Edembe L
    Biosens Bioelectron; 2013 Dec; 50():478-85. PubMed ID: 23911663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase.
    Filip J; Tkac J
    Bioelectrochemistry; 2014 Apr; 96():14-20. PubMed ID: 24361897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction.
    Cracknell JA; McNamara TP; Lowe ED; Blanford CF
    Dalton Trans; 2011 Jul; 40(25):6668-75. PubMed ID: 21544308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases.
    Suraniti E; Abintou M; Durand F; Mano N
    Bioelectrochemistry; 2012 Dec; 88():65-9. PubMed ID: 22772078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells.
    Durand F; Kjaergaard CH; Suraniti E; Gounel S; Hadt RG; Solomon EI; Mano N
    Biosens Bioelectron; 2012 May; 35(1):140-146. PubMed ID: 22410485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory binding of an asparagine residue to the coordination-unsaturated type I Cu center in bilirubin oxidase mutants.
    Kataoka K; Tsukamoto K; Kitagawa R; Ito T; Sakurai T
    Biochem Biophys Res Commun; 2008 Jul; 371(3):416-9. PubMed ID: 18445482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190.
    Han X; Zhao M; Lu L; Liu Y
    Fungal Biol; 2012 Aug; 116(8):863-71. PubMed ID: 22862914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction.
    Lalaoui N; Le Goff A; Holzinger M; Cosnier S
    Chemistry; 2015 Nov; 21(47):16868-73. PubMed ID: 26449635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss.
    Tasca F; Farias D; Castro C; Acuna-Rougier C; Antiochia R
    PLoS One; 2015; 10(7):e0132181. PubMed ID: 26196288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 A resolution using a twinned crystal.
    Mizutani K; Toyoda M; Sagara K; Takahashi N; Sato A; Kamitaka Y; Tsujimura S; Nakanishi Y; Sugiura T; Yamaguchi S; Kano K; Mikami B
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jul; 66(Pt 7):765-70. PubMed ID: 20606269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into multicopper oxidase laccase from
    Agrawal K; Shankar J; Kumar R; Verma P
    J Environ Sci Health B; 2020; 55(12):1048-1060. PubMed ID: 32877269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode.
    Shleev S; Christenson A; Serezhenkov V; Burbaev D; Yaropolov A; Gorton L; Ruzgas T
    Biochem J; 2005 Feb; 385(Pt 3):745-54. PubMed ID: 15453829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen.
    Kataoka K; Kitagawa R; Inoue M; Naruse D; Sakurai T; Huang HW
    Biochemistry; 2005 May; 44(18):7004-12. PubMed ID: 15865445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reversible change in the redox state of type I Cu in Myrothecium verrucaria bilirubin oxidase depending on pH.
    Zoppellaro G; Sakurai N; Kataoka K; Sakurai T
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1998-2000. PubMed ID: 15388981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the indole ring of Trp396 covalently bound with the imidazole ring of His398 coordinated to type I copper in bilirubin oxidase.
    Kataoka K; Ito T; Okuda Y; Sakai Y; Yamashita S; Sakurai T
    Biochem Biophys Res Commun; 2020 Jan; 521(3):620-624. PubMed ID: 31679691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme.
    Lalaoui N; Holzinger M; Le Goff A; Cosnier S
    Chemistry; 2016 Jul; 22(30):10494-500. PubMed ID: 27328033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.