These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17020868)
1. On the hydrodynamic analysis of macromolecular conformation. Harding SE Biophys Chem; 1995; 55(1-2):69-93. PubMed ID: 17020868 [TBL] [Abstract][Full Text] [Related]
2. The ELLIPS suite of macromolecular conformation algorithms. Harding SE; Horton JC; Cölfen H Eur Biophys J; 1997; 25(5-6):347-59. PubMed ID: 9213555 [TBL] [Abstract][Full Text] [Related]
3. Novel size-independent modeling of the dilute solution conformation of the immunoglobulin IgG Fab' domain using SOLPRO and ELLIPS. Carrasco B; de la Torre JG; Byron O; King D; Walters C; Jones S; Harding SE Biophys J; 1999 Dec; 77(6):2902-10. PubMed ID: 10585914 [TBL] [Abstract][Full Text] [Related]
4. Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO. García de la Torre J; Harding SE Biophys Rev; 2013 Jun; 5(2):195-206. PubMed ID: 23646070 [TBL] [Abstract][Full Text] [Related]
5. A General Method for Modeling Macromolecular Shape in Solution: A Graphical (II-G) Intersection Procedure for Triaxial Ellipsoids. Harding SE Biophys J; 1987 Apr; 51(4):673-80. PubMed ID: 19431695 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic Modeling and Its Application in AUC. Rocco M; Byron O Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648 [TBL] [Abstract][Full Text] [Related]
7. Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. García de la Torre J Biophys Chem; 2001 Nov; 93(2-3):159-70. PubMed ID: 11804723 [TBL] [Abstract][Full Text] [Related]
8. A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology. Gillis RB; Rowe AJ; Adams GG; Harding SE Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):142-57. PubMed ID: 25686159 [TBL] [Abstract][Full Text] [Related]
9. Hydrodynamic behavior and dilute solution properties of Ulva fasciata algae polysaccharide. Shao P; Zhu Y; Qin M; Fang Z; Sun P Carbohydr Polym; 2015 Dec; 134():566-72. PubMed ID: 26428159 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes. Byron O Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937 [TBL] [Abstract][Full Text] [Related]
11. Application of SAXS for the Structural Characterization of IDPs. Kachala M; Valentini E; Svergun DI Adv Exp Med Biol; 2015; 870():261-89. PubMed ID: 26387105 [TBL] [Abstract][Full Text] [Related]
12. Application of recent advances in hydrodynamic methods for characterising mucins in solution. Almutairi FM; Cifre JG; Adams GG; Kök MS; Mackie AR; de la Torre JG; Harding SE Eur Biophys J; 2016 Jan; 45(1):45-54. PubMed ID: 26596272 [TBL] [Abstract][Full Text] [Related]
13. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties. Ortega A; Amorós D; García de la Torre J Methods; 2011 May; 54(1):115-23. PubMed ID: 21163355 [TBL] [Abstract][Full Text] [Related]
14. The shape of myosin subfragment-1. A equivalent oblate ellipsoid model based on hydrodynamic properties. Yang JT; Wu CC Biochemistry; 1977 Dec; 16(26):5785-9. PubMed ID: 588552 [TBL] [Abstract][Full Text] [Related]
15. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Byron O Biophys J; 1997 Jan; 72(1):408-15. PubMed ID: 8994627 [TBL] [Abstract][Full Text] [Related]
16. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques. Saadat A; Khomami B J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302 [TBL] [Abstract][Full Text] [Related]
17. Prediction of the rotational diffusion behavior of biopolymers on the basis of their solution or crystal structure. Müller JJ Biopolymers; 1991 Feb; 31(2):149-60. PubMed ID: 2043745 [TBL] [Abstract][Full Text] [Related]
18. Macromolecular crowding in biological systems: hydrodynamics and NMR methods. Bernadó P; García de la Torre J; Pons M J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098 [TBL] [Abstract][Full Text] [Related]
19. Building hydrodynamic bead-shell models for rigid bioparticles of arbitrary shape. Garcia de la Torre J Biophys Chem; 2001 Dec; 94(3):265-74. PubMed ID: 11804736 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite. Brookes E; Rocco M Eur Biophys J; 2018 Oct; 47(7):855-864. PubMed ID: 29594411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]