These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17020884)

  • 21. Molecular Recognition of Rhodopsin Kinase GRK1 and Recoverin Is Tuned by Switching Intra- and Intermolecular Electrostatic Interactions.
    Abbas S; Marino V; Dell'Orco D; Koch KW
    Biochemistry; 2019 Oct; 58(43):4374-4385. PubMed ID: 31621304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase.
    Komolov KE; Zinchenko DV; Churumova VA; Vaganova SA; Weiergräber OH; Senin II; Philippov PP; Koch KW
    Biol Chem; 2005 Mar; 386(3):285-9. PubMed ID: 15843174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation.
    Sanada K; Shimizu F; Kameyama K; Haga K; Haga T; Fukada Y
    FEBS Lett; 1996 Apr; 384(3):227-30. PubMed ID: 8617359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double electron-electron resonance probes Ca²⁺-induced conformational changes and dimerization of recoverin.
    Myers WK; Xu X; Li C; Lagerstedt JO; Budamagunta MS; Voss JC; Britt RD; Ames JB
    Biochemistry; 2013 Aug; 52(34):5800-8. PubMed ID: 23906368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1.
    Vladimirov VI; Zernii EY; Baksheeva VE; Wimberg H; Kazakov AS; Tikhomirova NK; Nemashkalova EL; Mitkevich VA; Zamyatnin AA; Lipkin VM; Philippov PP; Permyakov SE; Senin II; Koch KW; Zinchenko DV
    Cell Calcium; 2018 Jul; 73():55-69. PubMed ID: 29684785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments.
    Senin II; Höppner-Heitmann D; Polkovnikova OO; Churumova VA; Tikhomirova NK; Philippov PP; Koch KW
    J Biol Chem; 2004 Nov; 279(47):48647-53. PubMed ID: 15355976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin.
    Ranaghan MJ; Kumar RP; Chakrabarti KS; Buosi V; Kern D; Oprian DD
    J Biol Chem; 2013 Dec; 288(50):36160-7. PubMed ID: 24189072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acid sequences of two immune-dominant epitopes of recoverin are involved in Ca2+/recoverin-dependent inhibition of phosphorylation of rhodopsin.
    Senin II; Tikhomirova NK; Churumova VA; Grigoriev II; Kolpakova TA; Zinchenko DV; Philippov PP; Zernii EY
    Biochemistry (Mosc); 2011 Mar; 76(3):332-8. PubMed ID: 21568868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase.
    Senin II; Zargarov AA; Alekseev AM; Gorodovikova EN; Lipkin VM; Philippov PP
    FEBS Lett; 1995 Nov; 376(1-2):87-90. PubMed ID: 8521974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular structure and target recognition of neuronal calcium sensor proteins.
    Ames JB; Lim S; Ikura M
    Front Mol Neurosci; 2012 Jan; 5():10. PubMed ID: 22363261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
    Ozawa T; Fukuda M; Nara M; Nakamura A; Komine Y; Kohama K; Umezawa Y
    Biochemistry; 2000 Nov; 39(47):14495-503. PubMed ID: 11087403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.
    Hamasaki-Katagiri N; Molchanova T; Takeda K; Ames JB
    J Biol Chem; 2004 Mar; 279(13):12744-54. PubMed ID: 14722091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction.
    Klenchin VA; Calvert PD; Bownds MD
    J Biol Chem; 1995 Jul; 270(27):16147-52. PubMed ID: 7608179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis.
    Xu X; Ishima R; Ames JB
    Proteins; 2011 Jun; 79(6):1910-22. PubMed ID: 21465563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium-sensitive control of rhodopsin phosphorylation in the reconstituted system consisting of photoreceptor membranes, rhodopsin kinase and recoverin.
    Gorodovikova EN; Senin II; Philippov PP
    FEBS Lett; 1994 Oct; 353(2):171-2. PubMed ID: 7926045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.