These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 17022170)

  • 21. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice.
    Quilis J; Peñas G; Messeguer J; Brugidou C; San Segundo B
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1215-31. PubMed ID: 18700826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen transfer rate identifies priming compounds in parsley cells.
    Schilling JV; Schillheim B; Mahr S; Reufer Y; Sanjoyo S; Conrath U; Büchs J
    BMC Plant Biol; 2015 Nov; 15():282. PubMed ID: 26608728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant-insect interactions: molecular approaches to insect resistance.
    Ferry N; Edwards MG; Gatehouse JA; Gatehouse AM
    Curr Opin Biotechnol; 2004 Apr; 15(2):155-61. PubMed ID: 15081055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbe-associated molecular patterns (MAMPs) probe plant immunity.
    Bittel P; Robatzek S
    Curr Opin Plant Biol; 2007 Aug; 10(4):335-41. PubMed ID: 17652011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects.
    Kehr J
    J Exp Bot; 2006; 57(4):767-74. PubMed ID: 16495410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does chromatin remodeling mark systemic acquired resistance?
    van den Burg HA; Takken FL
    Trends Plant Sci; 2009 May; 14(5):286-94. PubMed ID: 19369112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant-insect interactions.
    Stotz HU; Kroymann J; Mitchell-Olds T
    Curr Opin Plant Biol; 1999 Aug; 2(4):268-72. PubMed ID: 10458997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Priming by airborne signals boosts direct and indirect resistance in maize.
    Ton J; D'Alessandro M; Jourdie V; Jakab G; Karlen D; Held M; Mauch-Mani B; Turlings TC
    Plant J; 2007 Jan; 49(1):16-26. PubMed ID: 17144894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack.
    Kuśnierczyk A; Winge P; Jørstad TS; Troczyńska J; Rossiter JT; Bones AM
    Plant Cell Environ; 2008 Aug; 31(8):1097-115. PubMed ID: 18433442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway.
    Wang D; Pajerowska-Mukhtar K; Culler AH; Dong X
    Curr Biol; 2007 Oct; 17(20):1784-90. PubMed ID: 17919906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperation of plants and microorganisms: getting closer to the genetic construction of sustainable agro-systems.
    Tikhonovich IA; Provorov NA
    Biotechnol J; 2007 Jul; 2(7):833-48. PubMed ID: 17506027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shades of gray: the world of quantitative disease resistance.
    Poland JA; Balint-Kurti PJ; Wisser RJ; Pratt RC; Nelson RJ
    Trends Plant Sci; 2009 Jan; 14(1):21-9. PubMed ID: 19062327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-to-air signals.
    Farmer EE
    Nature; 2001 Jun; 411(6839):854-6. PubMed ID: 11459069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.
    Gómez-Ariza J; Campo S; Rufat M; Estopà M; Messeguer J; San Segundo B; Coca M
    Mol Plant Microbe Interact; 2007 Jul; 20(7):832-42. PubMed ID: 17601170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of temperature modulation of plant defense against biotrophic microbes.
    Wang Y; Bao Z; Zhu Y; Hua J
    Mol Plant Microbe Interact; 2009 May; 22(5):498-506. PubMed ID: 19348568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systemic acquired resistance: the elusive signal(s).
    Vlot AC; Klessig DF; Park SW
    Curr Opin Plant Biol; 2008 Aug; 11(4):436-42. PubMed ID: 18614393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms.
    Raacke IC; von Rad U; Mueller MJ; Berger S
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1138-46. PubMed ID: 17022178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana.
    Zhang S; Yang X; Sun M; Sun F; Deng S; Dong H
    J Integr Plant Biol; 2009 Feb; 51(2):167-74. PubMed ID: 19200155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling in plant disease resistance and symbiosis.
    Zhao S; Qi X
    J Integr Plant Biol; 2008 Jul; 50(7):799-807. PubMed ID: 18713390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR).
    Choudhary DK; Johri BN
    Microbiol Res; 2009; 164(5):493-513. PubMed ID: 18845426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.