BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17022211)

  • 1. X-ray imaging with amorphous selenium: pulse height measurements of avalanche gain fluctuations.
    Lui BJ; Hunt DC; Reznik A; Tanioka K; Rowlands JA
    Med Phys; 2006 Sep; 33(9):3183-92. PubMed ID: 17022211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise.
    Hunt DC; Tanioka K; Rowlands JA
    Med Phys; 2007 Mar; 34(3):976-86. PubMed ID: 17441244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray imaging with amorphous selenium: X-ray to charge conversion gain and avalanche multiplication gain.
    Hunt DC; Kirby SS; Rowlands JA
    Med Phys; 2002 Nov; 29(11):2464-71. PubMed ID: 12462710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct-conversion flat-panel imager with avalanche gain: feasibility investigation for HARP-AMFPI.
    Wronski MM; Rowlands JA
    Med Phys; 2008 Dec; 35(12):5207-18. PubMed ID: 19175080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ghosting caused by bulk charge trapping in direct conversion flat-panel detectors using amorphous selenium.
    Zhao W; DeCrescenzo G; Kasap SO; Rowlands JA
    Med Phys; 2005 Feb; 32(2):488-500. PubMed ID: 15789596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of intrinsic avalanche noise.
    Hunt DC; Tanioka K; Rowlands JA
    Med Phys; 2007 Dec; 34(12):4654-63. PubMed ID: 18196793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager).
    Zhao W; Li D; Reznik A; Lui BJ; Hunt DC; Rowlands JA; Ohkawa Y; Tanioka K
    Med Phys; 2005 Sep; 32(9):2954-66. PubMed ID: 16266110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.
    Fang Y; Badal A; Allec N; Karim KS; Badano A
    Med Phys; 2012 Jan; 39(1):308-19. PubMed ID: 22225301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers.
    Rau AW; Bakueva L; Rowlands JA
    Med Phys; 2005 Oct; 32(10):3160-77. PubMed ID: 16279070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Scintillator High-Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP-AMFPI): Initial fabrication and characterization.
    Scheuermann JR; Howansky A; Hansroul M; Léveillé S; Tanioka K; Zhao W
    Med Phys; 2018 Feb; 45(2):794-802. PubMed ID: 29171067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.
    Samant SS; Gopal A
    Med Phys; 2006 Aug; 33(8):2783-91. PubMed ID: 16964854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging.
    Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Li Y; Su Z; Wang Y; Yamamoto J; Du H; Cunningham I; Klugerman M; Shah K
    Med Phys; 2005 Oct; 32(10):3067-83. PubMed ID: 16279059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical characterization of a prototype selenium-based full field digital mammography detector.
    Saunders RS; Samei E; Jesneck JL; Lo JY
    Med Phys; 2005 Feb; 32(2):588-99. PubMed ID: 15789606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.
    Samant SS; Gopal A
    Med Phys; 2006 Sep; 33(9):3557-67. PubMed ID: 17022252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On site evaluation of three flat panel detectors for digital radiography.
    Borasi G; Nitrosi A; Ferrari P; Tassoni D
    Med Phys; 2003 Jul; 30(7):1719-31. PubMed ID: 12906189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors.
    Hajdok G; Yao J; Battista JJ; Cunningham IA
    Med Phys; 2006 Oct; 33(10):3601-20. PubMed ID: 17089826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.
    Hajdok G; Battista JJ; Cunningham IA
    Med Phys; 2008 Jul; 35(7):3194-204. PubMed ID: 18697544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors.
    Kasap S; Frey JB; Belev G; Tousignant O; Mani H; Greenspan J; Laperriere L; Bubon O; Reznik A; DeCrescenzo G; Karim KS; Rowlands JA
    Sensors (Basel); 2011; 11(5):5112-57. PubMed ID: 22163893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.
    Sultana A; Reznik A; Karim KS; Rowlands JA
    Med Phys; 2008 Oct; 35(10):4324-32. PubMed ID: 18975678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of solid-state avalanche amorphous selenium for medical imaging.
    Scheuermann JR; Goldan AH; Tousignant O; Léveillé S; Zhao W
    Med Phys; 2015 Mar; 42(3):1223-6. PubMed ID: 25735277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.