BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17022404)

  • 1. Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?
    Mayer P; Reichenberg F
    Environ Toxicol Chem; 2006 Oct; 25(10):2639-44. PubMed ID: 17022404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals.
    Kwon JH; Lee SY; Kang HJ; Mayer P; Escher BI
    Environ Sci Technol; 2016 Nov; 50(21):12004-12011. PubMed ID: 27715022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships Between Aquatic Toxicity, Chemical Hydrophobicity, and Mode of Action: Log Kow Revisited.
    Lambert FN; Vivian DN; Raimondo S; Tebes-Stevens CT; Barron MG
    Arch Environ Contam Toxicol; 2022 Nov; 83(4):326-338. PubMed ID: 35864329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new concept for the environmental risk assessment of poorly water soluble compounds and its application to consumer products.
    Tolls J; Müller M; Willing A; Steber J
    Integr Environ Assess Manag; 2009 Jul; 5(3):374-8. PubMed ID: 20050026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating n-octanol-water partition coefficients for neutral highly hydrophobic chemicals using measured n-butanol-water partition coefficients.
    Hanson KB; Hoff DJ; Lahren TJ; Mount DR; Squillace AJ; Burkhard LP
    Chemosphere; 2019 Mar; 218():616-623. PubMed ID: 30502700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test.
    Klüver N; Bittermann K; Escher BI
    Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.
    Stadnicka-Michalak J; Tanneberger K; Schirmer K; Ashauer R
    PLoS One; 2014; 9(3):e92303. PubMed ID: 24647349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish.
    Connell DW; Hawker DW
    Ecotoxicol Environ Saf; 1988 Dec; 16(3):242-57. PubMed ID: 3229380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.
    Furuhama A; Hasunuma K; Aoki Y
    SAR QSAR Environ Res; 2015; 26(10):809-30. PubMed ID: 26540445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Membrane Concentration and Mass-Balance Model to Identify Baseline Cytotoxicity of Hydrophobic and Ionizable Organic Chemicals in Mammalian Cell Lines.
    Lee J; Braun G; Henneberger L; König M; Schlichting R; Scholz S; Escher BI
    Chem Res Toxicol; 2021 Sep; 34(9):2100-2109. PubMed ID: 34357765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using molecular docking between organic chemicals and lipid membrane to revise the well known octanol-water partition coefficient of the mixture.
    Wang T; Zhou X; Wang D; Yin D; Lin Z
    Environ Toxicol Pharmacol; 2012 Jul; 34(1):59-66. PubMed ID: 22445871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do microplastics mediate the effects of chemicals on aquatic organisms?
    Marchant DJ; Iwan Jones J; Zemelka G; Eyice O; Kratina P
    Aquat Toxicol; 2022 Jan; 242():106037. PubMed ID: 34844050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The discrimination of excess toxicity from baseline effect: effect of bioconcentration.
    Su LM; Liu X; Wang Y; Li JJ; Wang XH; Sheng LX; Zhao YH
    Sci Total Environ; 2014 Jun; 484():137-45. PubMed ID: 24698800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic toxicity testing of liquid hydrophobic chemicals - Passive dosing exactly at the saturation limit.
    Stibany F; Schmidt SN; Schäffer A; Mayer P
    Chemosphere; 2017 Jan; 167():551-558. PubMed ID: 27770722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of an aquatic humic acid on the bioconcentration of selected compounds in Daphnia magna.
    Schramm KW; Behechti A; Beck B; Kettrup A
    Ecotoxicol Environ Saf; 1998 Sep; 41(1):73-6. PubMed ID: 9756692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between exposure and dose in aquatic toxicity tests for organic chemicals.
    Mackay D; McCarty LS; Arnot JA
    Environ Toxicol Chem; 2014 Sep; 33(9):2038-46. PubMed ID: 24889496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory uptake kinetics of neutral hydrophobic organic chemicals in a marine benthic fish, Pseudopleuronectes yokohamae.
    Kobayashi J; Sakurai T; Mizukawa K; Kinoshita K; Ito N; Hashimoto S; Nakajima D; Kawai T; Imaizumi Y; Takada H; Suzuki N
    Chemosphere; 2013 Nov; 93(8):1479-86. PubMed ID: 23962382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.